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A spatial–temporal approach to modeling somatic growth
across inland recreational fisheries landscapes
Christopher L. Cahill, Sean C. Anderson, Andrew J. Paul, Laura MacPherson, Michael G. Sullivan,
Brett van Poorten, Carl J. Walters, and John R. Post

Abstract: We develop a mechanistically motivated von Bertalanffy growth model to estimate growth rate and its predictors from
spatial–temporal data and compare this model’s performance with a suite of commonly used mixed-effects growth models. We
test these models with simulated data and then apply them to test whether concerns that high density is causing growth
suppression of walleye (Sander vitreus) in Alberta, Canada, are supported using data collected during 2000–2017. Simulation
experiments demonstrated that models that failed to account for complex dependency structures often resulted in growth rate
estimates that were less accurate and biased low as judged by median absolute relative error and median relative error,
respectively. The magnitude of this bias depended on the parameter values used for simulation. For the case study, a spatial–
temporal model was more parsimonious and had higher predictive performance relative to simpler models and did not support
the slow-growing walleye hypothesis in Alberta. These findings demonstrate the importance of considering spatial–temporal
correlation in analyses that rely on surveillance-style monitoring datasets, particularly when examining relationships between
life-history traits and environmental characteristics.

Résumé : Nous développons un modèle de croissance de von Bertalanffy à relations mécanistes pour estimer le taux de
croissance et ses variables prédictives à partir de données spatiotemporelles et comparons la performance de ce modèle à une
série de modèles de croissance à effets mixtes couramment utilisés. Nous mettons ces modèles à l’essai en utilisant des données
simulées et les appliquons ensuite pour vérifier si des données recueillies de 2000 à 2017 appuient l’interprétation proposée
qu’une forte densité causerait une suppression de la croissance de dorés jaunes (Sander vitreus) en Alberta (Canada). Des expéri-
ences de simulation démontrent que les modèles qui ne tiennent pas compte de structures de dépendance complexes produisent
souvent des estimations des taux de croissance moins exactes et biaisées vers le bas, comme indiqué par l’erreur relative médiane
absolue et l’erreur relative médiane, respectivement. La magnitude de ce biais dépend des valeurs des paramètres utilisées pour
la simulation. Pour l’étude de cas, un modèle spatiotemporel s’avère plus parcimonieux et présente une meilleure performance
prédictive que les modèles plus simples et n’appuie pas l’hypothèse des dorés à croissance lente en Alberta. Ces résultats
démontrent l’importance de tenir compte des corrélations spatiotemporelles dans les analyses qui reposent sur des ensembles
de données de type surveillance, en particulier pour l’examen des relations entre des caractères du cycle biologique et des
caractéristiques du milieu ambiant. [Traduit par la Rédaction]

Introduction
Inland recreational fisheries are embedded in complex social–

ecological systems (see Carruthers et al. 2019), generate
�US$51 billion·year−1 in North America (Funge-Smith 2018), and
support important ecosystem services when effectively managed
(Lynch et al. 2016). However, those tasked with assessing and man-
aging inland recreational fisheries face unique challenges. For
example, the status of inland recreational fisheries is often deter-
mined from snapshots of monitoring data that have been col-
lected across space and time (e.g., Lester et al. 2003; Post 2013;
Lorenzen et al. 2016), which precludes the use of many traditional
assessment methods (e.g., see methods in Hilborn and Walters

1992). Thus, a key challenge of managing lakes across landscapes
is that it is impossible to carry out in-depth assessments on every
lake within a jurisdiction and hence to manage on a lake-by-lake
basis (Shuter et al. 1998). Consequently, ecologists often use mon-
itoring data to relate life-history traits to environmental charac-
teristics to inform ecological processes, identify vulnerable
populations, and guide management actions across landscapes
(e.g., Shuter et al. 1998; Lester et al. 2014; Wilson et al. 2019a).

Little attention has been paid to the issue that the scale at which
many inland recreational fisheries operate may introduce spatial
and temporal correlation to the monitoring data that manage-
ment agencies collect from these systems. This is important be-
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cause many landscape-scale datasets are observational in nature
(Nichols and Williams 2006) and because studies conducted using
such datasets need to be vigilant when inferring process from
pattern, as a lack of controls, interspersion of treatments, and (or)
missing variables can all bias inference (Hurlbert 1984). Thus, the
price one pays to analyze landscape-scale data is that there exists
the potential for complex correlation structures within those
data, which can bias statistical and ecological inference in unex-
pected ways (Zuur et al. 2017).

Hierarchical modeling has emerged as a powerful tool for dis-
entangling the ecological process of interest from uncontrolled
sources of observation error (Royle and Dorazio 2008); however,
such modeling has typically assumed independence among lakes
or years in the context of inland recreational fisheries. For in-
stance, many studies treat lakes as discrete grouping levels for
normally distributed random effects to inform fisheries ecology
and management across landscapes (e.g., Helser and Lai 2004;
Tsehaye et al. 2016; Wilson et al. 2019a). Whereas lakes are often
treated as independent units in mixed-effects models for compu-
tational ease, there are intuitive reasons to suspect this assump-
tion may not always hold. For example, both the landscape-scale
generalizations and social–ecological systems approaches to in-
land fisheries recognize that the correct scale of assessment and
management is not at the scale of the individual lake — either
because of correlated biological or environmental characteristics
(e.g., species productivity, primary productivity, temperature,
etc.; Myers et al. 1997; Shuter et al. 1998) or because angler move-
ments and hence fish dynamics may be correlated among lakes
(Post et al. 2008; Kaemingk et al. 2018). Both views imply that data
collected from inland recreational fisheries may be correlated in
space or time, and thus methods that account for spatial–temporal
correlation may help to separate signal from noise (Cressie and
Wikle 2015).

In Alberta, Canada, an 18-year province-wide monitoring data-
set on walleye (Sander vitreus) provides a useful case study with
which to explore the challenges of analyzing monitoring data and
providing management advice in the presence of spatial–temporal
correlation. Walleye are among the most widely distributed and
sought-after gamefishes in North America (Bozek et al. 2011), and
in Alberta high angling effort and low population productivity
resulted in walleye declines and collapsed fisheries by the 1990s
(Post et al. 2002). In response to these declines, managers imple-
mented stringent regulations to reduce fishing mortality (i.e.,
catch-and-release, high minimum length limits), which promoted
the partial recovery of walleye in many lakes by the early 2000s
(Sullivan 2003). In both January 2018 and 2020, public consulta-
tions on fisheries management practices were held throughout
the province. A criticism raised by many stakeholders during
these meetings was that walleye populations were overabundant
and hence growing slowly, termed the Slow-Growing Walleye Hy-
pothesis (SGWH). While these criticisms were anecdotal, ample
evidence of density-dependent somatic growth exists in the liter-
ature (Post et al. 1999; Lester et al. 2014). Consequently, the SGWH
is important to test because angler satisfaction is driven in part by
the size of fish caught (Beardmore et al. 2014), and because it
implies that managers may need to strike a balance between pro-
ducing a few large and many small fish (Walters and Post 1993).

This paper addresses the challenge of analyzing landscape-scale
fisheries data in the presence of spatial–temporal correlation. To
do so, we demonstrate a linkage between a commonly used so-
matic growth model and its underlying bioenergetics parameters.
We then use this derivation to motivate a spatial–temporal hier-
archical growth model and compare it with a suite of simpler
mixed-effects models using simulated data where truth is known,
and we measure model performance using several performance
measures and a decision analysis. Finally, we demonstrate the
unpredictable outcomes that can occur when ignoring spatial–
temporal dependency by applying each of these methods to an

18-year dataset to test the SGWH in Alberta. This comparison be-
tween simulation experiment and case study application helps
demonstrate the potential pitfalls of mis-specifying mixed-effects
models when analyzing landscape-scale fisheries data.

Materials and methods

Bioenergetics derivation of the von Bertalanffy growth model
The von Bertalanffy growth model is often used by fisheries

managers to report fish growth patterns and can be used to test
for the effects of covariates on growth rate early in life (Shuter
et al. 1998). This growth model is derived from a bioenergetics
model specifying

(1)
dW
dt

� HWt

2

3 � mWt

where W is weight at time t, and H and m are mass-specific ana-
bolic (building tissue) and catabolic (breaking down tissue) terms,
respectively. Solving eq. 1 and transforming from weight to length
yields the von Bertalanffy growth function:

(2) lî � l∞�1 � e[�(K)(ai�t0)]�

where ai and lî are the age and predicted length of fish i, respec-
tively, l∞ is a parameter that represents the average asymptotic
maximum length of fish, K is the unitless Brody “growth” coeffi-
cient, and t0 is a nuisance parameter that describes age when
length is hypothetically zero. This growth model implies that

(3) l∞ �
H
m

· �
�

1

3

where � is the shape parameter from a weight–length relation-
ship (W = �·Length�; see van Poorten and Walters 2016 eqs. 1–6).
Furthermore, it can be shown that

(4) K �
m
3

Thus, it is commonly recommended that studies examining the
effect of food availability on growth should focus primarily on l∞
rather than K when using the von Bertalanffy growth model be-
cause l∞ is related to the anabolic parameter H, whereas K is not
(e.g., Walters and Post 1993; van Poorten and Walters 2016). How-
ever, a reparameterization of the von Bertalanffy growth model
introduces a new parameter, � = K·l∞, which represents the
growth rate of length measurement units per year in early life and
reduces correlation among parameters (Gallucci and Quinn 1979).
Combining eqs. 3–4 to recast � in terms of the underlying bioen-
ergetics relationships shows that

(5) � �
H · �

�
1

3

3

Thus, growth rate in early life is exclusively a function of anabolic
gains, which scales with feeding rate or food availability (Beverton
and Holt 1957, pp. 105–106; Charnov 2010). Additionally, positive
covariation between H and m implies that l∞ varies much less with
changes in H than would be expected if H and m were indepen-
dent. Furthermore, while anglers may not care about growth in
early life history per se, they do care about the size of their catch
(Beardmore et al. 2014), and variation in adult size is linked to
growth rate in early life (Lester et al. 2004). Consequently, we
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focus on � as a proxy for food intake and density-related effects
throughout this paper.

Mixed-effects von Bertalanffy growth models
Here we develop four mixed-effects versions of the von Berta-

lanffy growth model derived above to use in both our simulation
experiment and case study below. The Gallucci and Quinn (1979)
von Bertalanffy growth model parameterization is

(6)
lî � l∞�1 � e

��� �

l∞
�(ai�t0)��e�i

�i � Normal(0, �2)

where parameters are defined in the previous section. This equa-
tion also assumes that observed lengths follow a lognormal distri-
bution with variance �2. A common extension to this model is to
incorporate a normally distributed random effect that accounts
for unstructured, among-lake heterogeneity. For simplicity, we
assume this random effect influences � rather than all parameters
simultaneously.

“By-lake” random effects
One mixed-effects parameterization of this model is

(7) �lake � e�0	Normal	0,�lake
2 


where lake represents a lake-specific deviation from the global
intercept �0, and �lake

2 describes the variance in the lake-specific
deviations. This “by-lake” random-effects structure is often em-
ployed in inland fisheries to assess growth and infer ecological
processes from data collected across multiple lakes (see related
models in Ogle et al. 2017; Wilson et al. 2019a; Höhne et al. 2020)
and represents our first model.

“By-time” random effects
A second version of the von Bertalanffy growth model is

(8) �year � e�0	Normal	0,�year
2 


where year represents a year-specific deviation from the global
average �0, and �year

2 now describes the variance of the year-
specific deviations. This “by-time” model applies a single devia-
tion to the average growth rate across all lakes at each time step
(see related random effects structures in Matthias et al. 2018;
Pedersen et al. 2018). The “by-time” model serves as an intermedi-
ate step between the “by-lake” model and the following model.

“Both” lake and time random effects
A third “both” model features lake-specific random effects and

year-specific random effects and thus is more complex than either
of the previous two mixed-effects models:

(9) �lake,year � e�0	Normal	0,�lake
2 
	Normal	0,�year

2 


Extensions of this third “both” model have also appeared in the
literature (see related models in Wagner et al. 2007; Tsehaye et al.
2016; Embke et al. 2019). The models we have noted thus far as-
sume that the random-effect deviations are independent for lakes
and (or) time steps.

Autoregressive lag-1 spatial–temporal (ar1-st) random
effects

Next, we introduce Gaussian random fields (GRFs) to extend the
models above to explicitly account for structured correlation or

dependency in space and time. GRFs can also help account for the
effect(s) of unmeasured covariates on the response variable (Zuur
et al. 2017) and have not yet been applied to the von Bertalanffy
growth function. A GRF is a multidimensional version of a Gauss-
ian random variable defined by the expectation, variance, and
covariance of a multivariate normal distribution (Cressie and
Wikle 2015). Specification of a GRF determines the value of a
random variable corresponding to any point in space s or space–
time s,t defined on a grid (e.g., an x–y grid for spatial models or an
x–y–t grid for space–time models).

One often approximates a GRF because full estimation can be
impossible, particularly for spatial–temporal models and large
datasets such as those collected across landscapes by fisheries
management agencies. One such approximation to a GRF is the
Stochastic Partial Differential Equation (SPDE) approach (Lindgren
et al. 2011), which assumes that a GRF is Markovian in nature (i.e.,
a Gaussian Markov random field or GMRF), and that the spatial
correlation follows a Matérn covariance function (Zuur et al. 2017).
The Matérn covariance function requires estimating two parame-
ters: Matérn 
, which describes the decorrelation rate with dis-
tance, and �, which controls the variance of the spatial noise. The
Matérn parameters 
 and � provide values for the spatial covari-
ance matrix �, and then the spatial precision matrix �−1 is calcu-
lated via the analytical methods in Lindgren et al. (2011). The SPDE
method requires laying a “mesh” across the study area, and the
nodes of this mesh are then estimated as spatially correlated ran-
dom effects. Spatial range (defined as the distance below which
spatial correlation is approximately ≤13%) and the marginal stan-
dard deviation of the spatial process �0 are then calculated as
derived variables (Lindgren and Rue 2015):

(10) spatial range �
�8




and

(11) �0 �
1

�
�4�

We can extend the von Bertalanffy modeling framework to ex-
plicitly account for first-order autoregressive spatial–temporal
correlation via

(12) �s,t � e�0	vs,t

where

(13) vs,t � vs,t�1 	 us,t

(14) us,t � GMRF(0, �)

and

(15) vs,t�1 � Normal�0,
�0

2

1 � 2�
Here, vs,t represents correlated site s and correlated temporal t

deviations for each location and year. A third parameter  is con-
strained to [−1, 1] and describes autoregressive temporal correla-
tion between t independent realizations of an isotropic spatial
random field us,t, while the term 1 − 2 enforces stationarity of the
spatial–temporal random field (see separable ar1-st random ef-
fects in Cameletti et al. 2011; Blangiardo and Cameletti 2015; Zuur
et al. 2017). We use s and t to distinguish between spatial–temporal
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correlated random effects and their independent lake and year
random effect counterparts (eqs. 7–9), although we note that for
our purposes lake and s correspond to the same location (i.e., a
given lake) and that year and t correspond to the same moments
in time (i.e., a given year). The covariance matrix � is obtained
using the estimated parameters 
 and � via the SPDE approach of
Lindgren et al. (2011). This “ar1-st” model is formulated such that
random effects for � are estimated for each lake–year combina-
tion, and this model allows growth rates at nearby points in space
and (or) time to be more similar than growth rates at locations
further away in space and (or) time. Thus, the ar1-st model relaxes
the assumptions of lake and year independence assumed by the
models presented above (i.e., the by-lake, by-time, and both
models).

Simulation experiment
We conducted a four-by-four factorial experiment to demon-

strate the performance of each of the models described in the
previous section. Each of the four models (by-lake, by-time, both,
and ar1-st) were used to simulate data, and each of the four models
was then fitted to each of the simulated datasets. All simulations
assumed single values for both t0 and l∞ to simplify comparison of
patterns among scenarios. For each set of simulations, we simu-
lated a collection of 15 lakes for 10 years and sampled 20 fish from
each lake–year combination. Random effects for the by-lake,
by-time, and both models were simulated in the R statistical en-
vironment (eqs. 7–9; R Core Team 2019), while Gaussian spatial–
temporal fields for the ar1-st model were simulated using the
GMRFlib package in C (Rue and Follestad 2001). For the ar1-st
model, we drew the centroid of each lake randomly from a uni-
form [0,10] distribution. We obtained fish ages within lakes by
randomly sampling integers between 0 and 25 and calculated
lengths by then applying the corresponding random effect values
and von Bertalanffy growth parameters. We then used calculated
lengths to generate observed lengths by adding lognormal noise
according to eq. 6. For each model and parameter combination,
we generated 300 replicate datasets and then fit all four models to
each replicate dataset. We recorded the marginal maximum like-
lihood estimate of �0 from each iteration and determined bias
and accuracy of models by calculating the median relative error
(MRE) and the median absolute relative error (MARE) across iter-
ations for each scenario. We repeated the entire four-by-four fac-
torial experiment nine times (i.e., 43 200 hierarchical model fits
in total) to explore the effects of varying random effect parameter
values on our results, and we varied values of �, �year, �0, , and
spatial range from low to high values. We chose parameter values
to be representative of walleye life history (Table 1), and all four
random-effects structures considered in the simulation experi-
ment are listed in Table 2.

In addition to the performance metrics above, we also con-
ducted a simple decision analysis that identified the MinMax
solution, which is the estimation model that resulted in the min-
imum value of the maximum MARE across all simulation scenar-
ios. MinMax is a tool used in game theory and decision analysis
that is useful for identifying an option (i.e., model) that is likely to
perform best given uncertainty in or incorrect assumptions about
the underlying dynamics of a system (McGilliard et al. 2015).
Phrased differently, the MinMax solution represents the best
model to use when one does not know which of the simulation
scenarios most accurately reflect truth, which is likely the case in
most landscape-scale age and growth analyses. We used MARE for
the MinMax calculations because it incorporates both bias and
variance in a single measure (see also McGilliard et al. 2015).

Case study application to the Alberta walleye fishery
We then applied each of the models above to Alberta’s standard-

ized Fall Walleye Index Netting (FWIN) program data (Fig. 1). Data
were collected according to the methods in Morgan (2002). Mul-
timesh gillnets were eight panels × 7.6 m in length, set in ran-
domly stratified locations across the 2–5 and 5–15 m depth strata,
and fished perpendicular to shore for 21–27 h during September
when water temperatures were 10–15 °C. Twenty-three percent of
the FWIN surveys used half the standard net length but the same
proportion of mesh sizes. We doubled catch rates in half nets to
make them comparable to the standard nets for our effective
density calculations (below). Age was estimated using fin rays or
otoliths, and we excluded fin ray age estimates >6 (Koenigs et al.
2015). Sex was determined via inspection of the gonads, and we
retained lakes with a minimum of 50 age–length samples for
analysis. A total of 251 FWIN surveys were conducted in 81 lakes
during 2000–2017 (surveys per lake: min. = 1, median = 3, max. =
12), and 36 798 fish were included in the analysis (18 264 females;
18 534 males).

We extended the estimation model from the simulations to
incorporate fixed effects to test the SGWH in Alberta. We esti-
mated the degree to which � was related to intraspecific effective
density, growing degree days (GDD) > 5 °C, interspecific effective
density, and an interaction term between intra- and interspecific
density:

(16) � � e�0	�1intraspecific	�2GDD	�3interspecific	�4interaction

plus the random-effect structures in the by-lake, by-time, both, or
ar1-st models. We used the intraspecific effective density covariate
and its corresponding 95% confidence intervals from these models
as our test of the SGWH in Alberta. We used average effective
density as our measure of density because it strikes a balance

Table 1. Parameters used for the von Bertalanffy growth model simulation experiment.

Parameter Description Value

No. of years No. of years for which data were simulated 10
No. of lakes No. of simulated lakes 15
No. of fish No. of simulated fish per lake 20
Age range Range of ages [0, 25]
l∞ Average asymptotic maximum size 55
�0 Juvenile growth rate 14
t0 Hypothetical age when length is zero −1
� Standard deviation (SD) in log space of the likelihood function 0.2
�lake SD of the lake random effects 0.2, 0.5, 0.8
�year SD of the year random effects 0.2, 0.5, 0.8
�0 SD of the spatial–temporal random effects 0.2, 0.5, 0.8
 Temporal correlation 0.1, 0.5, 0.9
Spatial range Distance at which spatial correlation decreases to

approximately ≤13%
10%, 50%, 90% of grid

Note: Parameters with multiple values were varied individually depending on the scenario, but were otherwise
held at middle values.
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between the number and consumption allometry of fish in a pop-
ulation and thus is a more appropriate measure of density-related
effects on fish growth compared with biomass or numbers per
hectare (Post et al. 1999). Effective density is defined as the sum of

squared fish lengths (i.e., �i�1

n
length2). This index approximates

population consumption of prey and therefore represents the
best measure of the intensity of exploitative competition (Walters
and Post 1993; Post et al. 1999). We calculated average effective
density for each lake–year combination as this value divided by
the number of nets set in a given lake in a given year. We used all
remaining covariates to explore additional variables known to
influence walleye growth rate. We estimated GDD based on the
latitude, longitude, and elevation of each lake’s centroid using
ClimateWNA (Wang et al. 2012), and we hypothesized this would
have a positive effect on growth rate. We defined interspecific
density as the effective density of all non-walleye fish within a
FWIN net (see online Supplementary material S11 for species).
Additionally, we included an interaction term between intra- and
interspecific density to represent the hypothesis that lakes varied
in terms of their overall carrying capacity, which may alter the
relationship between growth rates and intraspecific density. We
included an additional covariate �Sex to account for differences
in asymptotic size for males and females and allowed both asymp-
totic size and t0 to vary randomly by lake:

(17) l∞ � el∞global	�Sex	Normal	0, �lakel∞

2 


and

(18) t0 � t0global
+ Normal	0, �

laket0

2 

Covariates were standardized prior to analysis by subtracting the
mean and dividing by two times the standard deviation (Gelman
2008). We fit models with restricted maximum likelihood (REML)
and maximum likelihood (ML) to facilitate comparison among
models with different random effect structures and fixed effects,
respectively (Pinheiro and Bates 2006). We also fit models with
and without the interaction term to simplify comparisons among
models.

We used R-INLA to construct a mesh required for the SPDE
approximation (Lindgren and Rue 2015), which was laid over the
study area for the ar1-st model (S21). We forced mesh nodes to
coincide with lake centroids because we sought to estimate ran-
dom effects for individual lakes rather than having these values
be interpolated among mesh nodes using weighted averages (see
Zuur et al. 2017). We also tested whether our case study results
were sensitive to our choice of mesh (they were not).

We compared models using Akaike’s information criterion
(AIC) and predictive scores by conducting two cross-validation
experiments to evaluate the predictive performance of our mod-
els. Cross-validation involves repeatedly splitting data into “train-
ing” and “testing” sets, where models are fitted to a training set
and then used to predict the testing set. We used the fitted models
to calculate the natural logarithm of the likelihood of data given
the predictions for the testing set and divided this by the number
of observations in the testing set to obtain a predictive score for
each model. Models with the highest predictive scores were
deemed most parsimonious for out-of-sample prediction (Gelman
et al. 2014). We used two different cross-validation routines to test
performance of our models and to safeguard against overfitting:
leave-one-lake-out cross-validation, which tested for a model’s
ability to predict data in a new lake, and h-block cross validation,
which tested how well the models predicted blocks of data in
space (Roberts et al. 2017).

Even more mixed-effects models: random slopes ar1-st model
In addition to our primary test of the SGWH using the random-

intercept models above, we conducted an additional test of this
hypothesis that allowed the intraspecific density covariate to vary
by lake. We note that while most inland recreational fisheries
random-effects analyses assume variants of the random-intercept
model forms we described above (however see Wagner et al. 2007;
Tsehaye et al. 2016; Hansen et al. 2020), experience and ecological
intuition suggest that the impact of intraspecific density on wall-
eye growth rates may vary by lake (Fig. 2; see also Gelman and Hill
2007). Furthermore, this parameterization provides useful infor-
mation to fisheries biologists tasked with managing specific lakes
(i.e., this model provides information on the relationship between
effective walleye density and growth rate for a specific lake unlike
the random intercept models above). We used a within-and-

1Supplementary data are available with the article through the journal Web site at http://nrcresearchpress.com/doi/suppl/10.1139/cjfas-2019-0434.

Table 2. Random effects structures used in the simulation experiment and in the Alberta walleye
case study.

Model Description Random effects structure

by-lake Assumes variation around growth rates in lakes is
a normally distributed variable.

Normal	0, �lake
2 


by-time Assumes growth rates in lakes share temporal
deviations, which are assumed to be a normally
distributed variable.

Normal	0, �year
2 


both Assumes growth rates in lakes vary randomly,
while also sharing common temporal
deviations among lakes. All random deviations
are assumed to be normally distributed.

Normal	0, �lake
2 


Normal	0, �year
2 


ar1-st Relaxes the assumptions of the above models and
allows growth rate deviations at locations
nearby in space and (or) time to be more closely
related than those observed at locations further
away in space and (or) time.

vs,t = vs,t–1 + us,t

us,t � GMRF(0, �)

vs,t�1 � Normal�0,
�0

2

1�2�
Note: �lake

2 = variance of the lake-specific random effects; �year
2 = variance of the year-specific random effects;

�0
2 = variance of the spatial–temporal field;  = temporal correlation; GMRF = Gaussian Markov random field; � =

covariance matrix; vs,t = random effects correlated in space s and time t. The covariance matrix is obtained using the
Matérn parameters 
 and �, which are estimated using the stochastic partial differential equation approach
(Lindgren et al. 2011).
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among-lake parameterization to explicitly separate the effect of
walleye density within a given lake from the effective density
effect among lakes (see Bell et al. 2018). We constructed an addi-
tional ar1-st model to allow the intraspecific density coefficients
to vary randomly by group (lake):

(19) �s,t � e�0	�1intra-among	(�2	�lake)intra-within	�3GDD	�4inter

where

�lake � Normal(0, �lake
2 )

plus the ar1-st random effects. Here, intra-among represents a
lake’s mean effective walleye density, intra-within is the effective
walleye density centered within each lake, �2 represents the
global slope estimate for walleye density, and �lake represents the
random deviation from �2 for lake-specific intraspecific density
effects. Thus, while our primary test of the SGWH in Alberta was

conducted using the random-intercept models above, we con-
ducted this additional test to explore whether the SGWH was
supported in any specific lake within the Alberta FWIN dataset.
Thus, for this random-slopes ar1-st model we tested whether �2

plus the lake-specific deviations for slope �lake and the corre-
sponding 95% confidence intervals overlapped zero.

Estimation
We implemented all models in Template Model Builder (TMB;

see Kristensen et al. 2015) and assessed statistical validity using
methods in Zuur and Ieno (2016). TMB uses the Laplace approxi-
mation to calculate the marginal likelihood of the fixed effects
conditional on the best estimates of the random effects (Skaug
and Fournier 2006) and calculates the gradient of the marginal
likelihood via automatic differentiation (Kristensen et al. 2015).
These are then passed to the R statistical environment and opti-
mized using maximum marginal likelihood via the nlminb() func-
tion (R Core Team 2019). We used the R-INLA software to develop
the sparse matrices required for the SPDE approximation for the
ar1-st models (Lindgren and Rue 2015) and then passed this infor-
mation to TMB for estimation. We note that this was necessary
because R-INLA does not support nonlinear models such as the
von Bertalanffy growth model. We ensured the maximum gradi-
ent of the objective function was ≤0.001 and the Hessian matrix
was positive-definite to test for consistency with convergence.
Additionally, we encountered challenges fitting the ar1-st model
to datasets simulated without spatial–temporal correlation. We
placed vague penalties (i.e., priors) on both  and � to improve
numerical performance and overcome these issues in the simula-
tions. The penalty for  was

(20)  � Normal(0, 2)

while the penalty for � was

(21) log(�) � Normal(0, 3)

Additionally, in situations where  was estimated to be 1, we set
 = 1 and re-estimated the ar1-st model so that the fitted model
passed our convergence tests. These penalties and estimation
techniques were not necessary for models in the case study. All
code necessary to recreate our analyses and figures (including
maps) is available at https://github.com/ChrisFishCahill/walleye_
growth. Polygons for our maps were taken from publicly available
datasets (South 2017), and all other packages and software neces-
sary to create our maps can be found at the link above.

Results

Simulation results
Simulations revealed that the ar1-st model was able to recover

the true value of �0 under most of the simulated random effects
structures and parameter combinations (Fig. 3). Additionally, the
ar1-st model featured low bias (median MRE near zero across sce-
narios; S31) and demonstrated accuracy comparable to that of the
data generation model as judged by MARE across most scenarios
(S41). In the presence of spatial–temporal correlation, the ar1-st
model was often less biased and more accurate than all other
models (S31; S41), though all models performed similarly well
when random-effect noise was low (i.e., when �lake, �year, or �0
were at low levels; left middle panels of Fig. 3; S31; S41). Perfor-
mance of all models typically decreased as , random-effect noise,
or spatial range increased from low to high values (i.e., rows from
left to right Fig. 3; S31; S41).

The four-by-four factorial experiments revealed that estimation
models that omitted a source of variation in terms of the true data
generation process often resulted in �0 estimates that were biased
low; the magnitude of this bias depended on the parameter values

Fig. 1. Distribution of known but unsampled walleye lakes in
Alberta versus walleye lakes where surveys were conducted during
2000–2017 (open versus closed circles, respectively). Inset: location
of study area in Canada. Map created in R using publicly available
datasets. See Materials and methods for information on datasets.
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used in the simulation (Fig. 3; S31). For example, if data were
simulated by lake but the by-time model was used to estimate the
simulated data, the resulting �0 estimates from the by-time model
were generally biased low (Fig. 3; S31). The opposite was also true:
if data were simulated using the by-time model but estimated

using the by-lake model, the resulting �0 marginal maximum
likelihood estimates from the by-lake model were often biased
low (Fig. 3; S31). The both and ar1-st models were more flexible and
able to partition the random-effect variation of the by-lake and
by-time models and thus estimated �0 with low bias and accuracy

Fig. 2. Caricature demonstrating the importance of allowing coefficients to vary by group (i.e., lake) in mixed-effects models for landscape-
scale inland recreational fisheries analyses. In the plot on the left, lake was fitted as a random intercept, and thus lake-specific fits (thin lines)
shared a common slope with the global fit (thick line). In the plot on the right, both intercept and slope were allowed to vary by lake (thin
lines). Thus, while the latter model is more complex, it allows individual lakes to demonstrate neutral or even positive responses despite a
negative global relationship between growth rate and effective density (thick line).

Effec�ve walleye density

 etar ht
worg eyella

W

Random intercepts and a single slope

Effec�ve walleye density

W
al
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w
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 ra
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Random intercepts and a random slope

Fig. 3. Simulation results demonstrating the influence of random-effect structure on the estimation performance of von Bertalanffy growth
models. For each panel, each model (i.e., “by-lake”, “by-time”, “both, and “ar1-st”) was used to generate 300 datasets (data generation model
indicated by x-axis groupings). All models were then fit to each replicate dataset, and distributions of the estimated growth rate �0 are indicated by
the point-ranges (circle: 50th quantile; inner range: 25th and 75th quantiles, outer range: 10th and 90th quantiles). Open circles indicate a match
between the data generation and estimation model, while solid horizontal lines indicate the true value of �0. Rows of panels indicate the influence
of varying parameters singly on results; thus, row one panels demonstrate the result of increasing temporal correlation  of the spatial–temporal
field from low to high values, while values of random effect noise �0 and spatial correlation range were held at middle values. Note: �lake and �year

were also varied from low to high values in the �0 row, but were otherwise held at middle values (see Table 1 for values). [Colour online.]
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comparable to that of the true model (S31; S41). This general pat-
tern remained as the true data generation process increased in
complexity. For example, the ar1-st model often performed com-
parably well in terms of MRE and MARE to the both model when
the both model was used to generate data, but the converse was
not always true, as �0 estimates from the both model were often
biased low when the ar1-st model was used to generate data (Fig. 3;
S31; S41). Results from the decision analysis showed that the ar1-st
model was the MinMax solution, indicating that this model was
the most robust choice across the potential axes of model mis-
specification considered in the simulation study (MinMax MARE
values: by-lake: 13.8%; by-time: 13.0%; both: 13.1%; ar1-st: 12.8%).

Case study results
Despite increased complexity, the ar1-st models were more par-

simonious than simpler mixed effects models as judged by �REML
AIC scores when fit to the case study data (Table 3). Additionally,
the ar1-st models featured the highest out-of-sample predictive
performance for both leave-one-lake-out and spatial h-block cross-
validation scores (Table 3). Comparisons of �ML AIC scores be-
tween models with and without interaction terms showed that
the ar1-st model did not support inclusion of the interaction term,
while �ML AIC scores for simpler models did support the inclu-
sion of an interaction term between intra- and interspecific effec-
tive density.

The top-ranked model as determined by both AIC values and
cross-validation scores was the ar1-st model without an interac-
tion term (Table 3; Fig. 4; see S51 for 251 lake–year fits to data). This
model estimated that female walleye grew to an l∞global

of 60.1 cm
(95% CI: 58.2–61.9 cm) versus 55.1 cm for males (95% CI: 53.4–
56.7 cm), while t∞global

was −0.95 year (95% CI: −1.03 to −0.88 year).
The global intercept for �0 was 14.4 cm·year−1 (95% CI: 13.4–
15.5 cm·year−1), and lake- and year-specific growth rates estimated
using the ar1-st model ranged from 7.9 to 26.3 cm·year−1 (Fig. 5;
S51). The top-ranked model indicated that the SGWH was not sup-
ported in Alberta (point estimate: 0.03; 95% CI: −0.01–0.07), and
none of the parameters hypothesized to affect � were signifi-
cantly different from zero (Fig. 6). This model also estimated that
the spatial range of correlation among lakes was 52 km (95% CI:
41–63 km) and that  was 0.93, indicating there was high temporal
persistence in the spatial–temporal field (95% CI: 0.90–0.95). The
ar1-st model with random slopes also supported the conclusions
of the top-ranked model. The within-lake regression coefficient
for intraspecific density using the random slopes model was 0.03
(95% CI: −0.09–0.14), and lake-specific estimates of the relation-
ship between walleye growth rate and intraspecific density indi-
cated that the SGWH was not supported in any of Alberta’s lakes
using FWIN data collected during 2000–2017 (Fig. 7). We present
residual diagnostic plots for the top ranked ar1-st model in S61 and
S71.

Comparison of the by-lake and ar1-st models in the case
study

Given the prevalence of the by-lake model in the literature, we
also compared key parameter estimates and 95% CIs from this
model to values from the top-ranked ar1-st model. Estimates and
uncertainty intervals for �0 from the by-lake model were shifted
lower relative to the corresponding values from the ar1-st model
(left panel, Fig. 6). These two models also differed in terms of the
SGWH test (second panel, Fig. 6), and the by-lake model tended to
provide point estimates that were farther from zero relative to the
ar1-st model (right four panels; Fig. 6). The by-lake model also
tended to estimate narrower 95% CIs for parameters thought to
influence growth rate relative to the ar1-st model (right four
panels; Fig. 6).

Discussion
We have shown how growth rate in early life — as per the von

Bertalanffy growth function — is linked to anabolism and then
used this derivation to motivate a general model that estimates
growth rate and its predictors from landscape-scale data with
spatial–temporal correlation. Additionally, we demonstrated via
simulation that this first-order autoregressive spatial–temporal

Fig. 4. Lake–year fits (n = 251) from the ar1-st model without an
interaction term compared with the observed data collected during
2000–2017. The thick orange and blue lines represent the best fits
for females (open circles) and males (closed circles), respectively,
while thin lines represent lake- and year-specific deviations in
growth for each sex. Note that dots are jittered for visualization.
[Colour online.]

Table 3. Information criteria for models fitted to the Alberta walleye data.

Model
Interaction
term

LOLO
CV

h-block
CV

�REML
AIC �ML AIC

ar1-st No 4.25 4.08 0.0 0.0
Yes 4.25 4.08 6.9 2.0

both No 3.69 3.68 7 997.8 7 993.5
Yes 3.70 3.68 7 917.3 7 906.2

by-lake No 3.62 3.58 10 011.0 10 006.4
Yes 3.63 3.58 9 990.1 9 978.9

by-time No 3.57 3.58 11 736.1 11 727.7
Yes 3.57 3.58 11 679.7 11 664.2

Note: Akaike’s information criterion (AIC) values were calculated using restricted maximum
likelihood (REML; for comparing among models with different random effect structures) and
maximum likelihood (ML; for comparing among models with and without interaction terms).
Average predictive scores were used for leave-one-lake-out and spatial cross-validation (LOLO CV
and h-block CV, respectively).
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(ar1-st) von Bertalanffy growth model provided superior growth
rate estimates relative to a suite of simpler mixed-effects models
when spatial–temporal correlation was present in the data. Bor-
rowing a tool from decision analysis, we also showed the ar1-st

model was most likely to minimize the worst errors in situations
when one does not know the underlying random-effects structure
of a given dataset. Notably, our simulation experiments also re-
vealed that failure to specify a random-effects structure that was

Fig. 5. Predictions of walleye growth rate (�, cm·year−1) through space and time as estimated by the ar1-st model using Fall Walleye Index Netting data
collected during 2000–2017. Maps created in R using publicly available datasets. See Materials and methods for information on datasets. [Colour online.]

Fig. 6. Comparison of key parameters (restricted maximum likelihood estimates ±95% CI) estimated with the ar1-st and by-lake models using
length-at-age data collected throughout Alberta during 2000–2017. Note: estimates from the first four panels were obtained from models fit
without the interaction term, whereas the fifth panel was obtained from models fit with the interaction term included in the model. Solid
horizontal lines indicate no effect.

�0 �1 Intraspecific Dens �2 Interspecific Dens �3 GDD �4 Dens Interaction

ar1 st by lake ar1 st by lake ar1 st by lake ar1 st by lake ar1 st by lake
−0.04

−0.02

0.00

0.02

0.0

0.1

−0.02

0.00

0.02

0.04

0.06

−0.025

0.000

0.025

0.050

0.075

13

14

15

Model

P
ar

am
et

er
 V

al
ue

1830 Can. J. Fish. Aquat. Sci. Vol. 77, 2020

Published by NRC Research Press

C
an

. J
. F

is
h.

 A
qu

at
. S

ci
. D

ow
nl

oa
de

d 
fr

om
 c

dn
sc

ie
nc

ep
ub

.c
om

 b
y 

Si
m

on
 F

ra
se

r 
U

ni
ve

rs
ity

 o
n 

07
/2

3/
21

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y.
 



Fig. 7. Lake-specific estimates (�2 + �lake) and 95% CIs of the effect of intraspecific effective density on walleye growth rate � from the ar1-st
random slopes model using Fall Walleye Index Netting data collected during 2000–2017.
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flexible enough to capture the underlying complexity of the sim-
ulated data both decreased accuracy of growth rate estimates and
resulted in estimates that were biased low relative to true values.
Furthermore, for a landscape-scale case study on walleye in Al-
berta, we demonstrated that the ar1-st growth model vastly out-
performed several simpler mixed-effects models in terms of both
parsimony and out-of-sample prediction performance. Lastly, the
ar1-st model found no evidence of density-dependent growth in
the Alberta walleye case study, which contrasted the conclusions
obtained from the simpler by-lake mixed-effects von Bertalanffy
growth model and the claims of some anglers in the province. We
explore these findings and their implications in detail below.

An important result from our simulations was that unmodeled
dependency in mixed-effects von Bertalanffy growth models often
results in growth rate estimates that are biased low; however, this
bias largely disappeared when using the ar1-st growth model that
explicitly accounted for complex random effects structures. We
suggest this bias is related to a lack of independence (presence of
pseudoreplication) in the simulated data, which increases both
parameter bias and the type I error rate in regression models
when not accounted for (Hurlbert 1984; Zuur and Ieno 2016).
Furthermore, we speculate that this bias is negative due to non-
linearities in the von Bertalanffy growth model. We believe our
findings parallel those of Miller et al. (2018), who showed that
temporal correlation inflated the effect size of covariates thought
to influence growth unless this source of dependency was explic-
itly accounted for using state-space modeling. This finding has
broad implications given the prevalence of the von Bertalanffy
growth model in the literature (e.g., Hilborn and Walters 1992;
Walters and Essington 2010; Lee et al. 2017), the importance of
obtaining accurate and reliable growth rate estimates for both
stock assessments and basic ecological research (Lorenzen et al.
2016; Korman et al. 2017; Lorenzen and Camp 2019), and because
the simpler hierarchical models we used here are often consid-
ered the de facto standard for analyzing age and growth data (e.g.,
Helser and Lai 2004; Ogle et al. 2017). Our findings demonstrate
that ecologists should be wary when applying mixed-effects
growth models to analyze landscape-scale datasets given the near
ubiquity of spatial–temporal correlation in real-world data (Cressie and
Wikle 2015) and because of the challenges of determining how
such correlation will impact an analysis (Zuur et al. 2017; this
study). Thus, we recommend that investigations examining rela-
tionships between life-history traits such as growth and environ-
mental characteristics explicitly incorporate the effects of space
and time and note that our findings are consistent with mounting
evidence that spatial–temporal models improve estimates of den-
sity dependence (Thorson et al. 2015b), abundance (Royle et al.
2013), species distributions (Thorson et al. 2015a), and rare or ex-
treme ecological events (Anderson and Ward 2019).

Our results from both the top-ranked ar1-st model and the
random slopes ar1-st model show that the available data do not
support the conclusion that walleye are experiencing density-
dependent growth in Alberta. This is surprising given the range of
densities observed due in part to the continued recovery of wall-
eye in the province (Sullivan 2003), the wide range of growth rates
we documented (e.g., see Figs. 4 and 5), and numerous studies
demonstrating density-dependent juvenile growth with similar
datasets in other fisheries (e.g., Lester et al. 2014; Ward et al. 2016).
We expected the effects of density to be most pronounced during
early life-history stages (Lorenzen and Camp 2019) and thus tested
for density effects on a parameter that approximates maximum
juvenile growth rate (Gallucci and Quinn 1979); however, there
may be issues with this approach. First, the von Bertalanffy
growth model has been criticized on theoretical grounds, as it has
been suggested that this model cannot cleanly separate juvenile
and adult growth rates (see Rennie et al. 2008). Nonetheless, the
von Bertalanffy model we implemented provided an index of ju-
venile growth rate in centimetres per year, and we showed that

the growth rate parameter we focused on is a consequence of
tissue-building processes using simple mechanistic relationships
(see also van Poorten and Walters 2016). We believe that such a
first-principles approach to modeling holds great potential for
gaining new insights in complex ecological systems, similar to
recommendations for both population ecology and spatial–
temporal modeling more generally (Brännström and Sumpter
2005; Cressie and Wikle 2015). With this in mind, future studies
could adapt more complex growth models to explicitly incorpo-
rate spatial–temporal random effects using a predictive process
approach (see models in Latimer et al. 2009). Second, the approach
we used treated t0 and l∞ as standard, lake-specific random effects
instead of spatially or time-varying quantities, which may not be
warranted (Lee et al. 2017; this study). Spatial–temporal effects for
these portions of the growth model were inestimable given the
available data, although informative priors could be used to im-
prove estimation of these quantities in the future. Lastly, it is
possible that density dependence affects walleye in life stages
other than early growth or that density effects could interact with
lifetime growth schedules in ways we did not consider (see
Lorenzen and Camp 2019).

The finding that walleye in the province were not experiencing
density-dependent growth rate suppression during 2000–2017
contrasts the claims of some anglers, and we believe this discrep-
ancy has important implications for fisheries management in Al-
berta. Some anglers report catching more fish than they did in the
1990s and that many of the fish they do catch are below the har-
vestable size. Numerous conversations with anglers during public
consultation meetings in January and February 2020 revealed that
anglers often capture many sublegal size walleye before capturing
a single harvestable-size fish and that many interpret this as evi-
dence for slow growth rates and (or) stunting; this is then used to
advocate for more liberal harvest regulations (C.L. Cahill, personal
observation). However, we explicitly tested the density-dependent
growth hypothesis and showed that growth rate suppression was
not supported. We suggest that it is important to remember that
fishing mortality caused many accessible walleye populations in
Alberta to decline and collapse by the mid-1990s (Post et al. 2002)
and that stringent regulations such as minimum length limits,
catch and release, and a novel harvest lottery tool have since been
used to improve walleye abundance in many of the lakes (Sullivan
2003; Spencer 2010). Additionally, survey data in some lakes
clearly show that walleye grow until they reach harvestable size
and that beyond this size, length frequency histograms appear
truncated. This truncation often coincides with the minimum
length limit for a given lake (see examples in Spencer 2010). We
note that while harvest regulations vary by lake and year across
the province, this size truncation is most apparent in several lake–
years in S51 where 50 cm minimum length limits have been in
place for a minimum of 5 years (S51; see Buck Lake 2005–2010,
2017; Iosegun Lake 2005; Round Lake 2017; Smoke Lake 2005, 2013;
Sturgeon Lake 2017). This information coupled with our findings
suggests that the reason anglers catch many small fish is not
because those fish grow slowly or are stunted, but rather because
large fish may be removed from these populations by harvest.
Ironically, if harvest was increased in an attempt to improve
growth rates, fish may be exposed to unsustainable levels of ex-
ploitation and decline toward population levels observed in the
1990s (see Post et al. 2002; Sullivan 2003; Spencer 2010).

Differences between the by-lake model and top ranked ar1-st
model illustrate an important finding of our work; failure to ac-
count for complex correlation structures in real-world datasets
can have unexpected consequences for an analysis and thus
change ecological inference (see also Fig. 6; Zuur et al. 2010, 2017;
Cressie and Wikle 2015). This is relevant given many landscape-
scale inland fisheries studies often consider some variant of the
by-lake model as their most complex hierarchical model (Ward
et al. 2016; Rypel et al. 2018; Höhne et al. 2020). Not only were error
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bars from the by-lake model typically narrower than those in the
ar1-st model, but point estimates for certain parameters also
changed from negative to positive values and were typically larger
in magnitude (Fig. 6). Additionally, the by-lake and ar1-st models
ultimately resulted in different inferences regarding the SGWH in
Alberta. While we do not know the underlying “truth” in the case
study, we believe it is likely that the ar1-st model provides a better
appraisal of the inherent complexity and uncertainty present in
the Alberta walleye dataset, particularly when considered in con-
junction with our simulation findings and our case study model
comparisons using AIC and cross-validation.

From an applied perspective, disparities between the by-lake
and ar1-st models could result in different advice being provided
to biologists and policy makers managing walleye in Alberta. For
example, the commonly used by-lake model indicated that size-
based fisheries objectives may require reductions in walleye
densities through more liberal harvest regulations to improve
growing conditions (see arguments in Walters and Post 1993;
Wilson et al. 2016). In contrast, the better-supported ar1-st model
showed that reducing density was unlikely to improve walleye
growth rates. Thus, naïve adoption of the simpler hierarchical
model’s results could result in harvest policies not supported by
the data and which could lead to overfishing. This finding is note-
worthy given the prevalence of datasets originating from surveillance-
style monitoring programs in both fisheries and applied ecological
settings more generally and because such datasets are often used
to inform resource management across broad spatial–temporal
scales (see examples in Lester et al. 2003; Nichols and Williams
2006; Cain et al. 2019). While decision analysis would ideally be
used to guide management actions such as these, we note that
such analyses are rarely employed across landscapes in inland
recreational fisheries (see Punt and Hilborn 1997; van Poorten and
MacKenzie 2020). As a result, we suggest that coupling spatial–
temporal methods such as those used here with decision analysis
and value of information modeling may represent a fruitful area
for future research in inland recreational fisheries (see Hansen
and Jones 2008).

The top-ranked model as judged by AIC and cross-validation
indicated that walleye growth rates were correlated to a spatial
range of about 52 km in Alberta and that there was high temporal
persistence in this spatial–temporal field. This distance is remark-
ably similar to results presented in Myers et al. (1997), who showed
that recruitment in freshwater fishes was spatially correlated to
distances of about 50 km. These authors hypothesized that the
correlation they detected in recruitment was primarily due to the
effects of “planktonic patchiness” and (or) predation in otherwise
isolated lakes. Similarly, growth rates in our study were spatially
correlated among lakes at short distances after we accounted for
sex, intraspecific and interspecific effective density, and temper-
ature, even though lakes were not physically connected. The pro-
cesses we modeled suggest that this residual correlation may be
due in part to similarities in primary productivity and (or) in how
this food is partitioned among communities in nearby lakes, as
both factors could govern the food supply available to walleye
within a given lake and hence local growth rates. The residual
spatial–temporal correlation we documented may represent a
fundamental limitation of this dataset, and experimentation may
be necessary to further resolve our collective understanding of
the remarkable variation in walleye growth rates across this large
inland recreational fishery landscape (see Figs. 4 and 5; see also
Walters 1986; Walters et al. 1988).

Many of the key issues in inland recreational fisheries science
and management inherently require spatial–temporal thinking
(e.g., see Arlinghaus et al. 2017), and yet spatial–temporal statisti-
cal techniques remain underused in the literature (however see
Myers et al. 1997; Isaak et al. 2014; Hocking et al. 2018). When
compared with a suite of commonly used mixed-effects von
Bertalanffy growth models that assumed lake and year indepen-

dence, the spatial–temporal growth model introduced here pro-
vided more accurate and less biased growth rate estimates in
datasets similar to those found in many applied ecological set-
tings. Furthermore, the spatial–temporal growth model improved
fits to real-world data when compared with the simpler mixed-
effects models, and differences in key predictions between the
model types could have resulted in misleading biological advice to
resource managers. While this study focused on nonlinear
spatial–temporal growth modeling, we see several potential ave-
nues for future research. For example, questions involving spatial
exploitation patterns near urban areas (Wilson et al. 2019b), the
effective design of landscape-scale monitoring programs or adap-
tive management experiments (Walters 1986; Williams et al.
2018), and the examination of fish–habitat relationships to inform
fisheries management practices (Grüss et al. 2019) can all be con-
fronted within the modeling framework presented here. Thus, we
hope that embracing the spatial–temporal complexity inherent to
inland recreational fisheries will result in richer ecological infer-
ences and improve policy recommendations in the future.
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