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A B S T R A C T   

Measuring fishing effort is one important element for effective management of recreational fisheries. Traditional 
intensive angler intercept survey methods collect many observations on a few water bodies per year to produce 
highly accurate estimates of fishing effort. However, scaling up this approach to understand landscapes with 
many systems, such as lake districts, is problematic. In these situations, spatially extensive sampling might be 
preferable to the traditional intensive sampling method. Here we validate a model-based approach that uses a 
smaller number of observations collected using multiple methods from many fishing sites to estimate total fishing 
effort across a fisheries landscape. We distributed on-site and aerial observations of fishing effort across 44 lakes 
in Vilas County, Wisconsin and then used generalized linear mixed models (GLMMs) to account for seasonal and 
daily trends as well as lake-specific differences in mean fishing effort. Estimates of total summer fishing effort 
predicted by GLMMs were on average within 11 % of those produced by traditional mean expansion. These 
estimates required less sampling effort per lake and can be produced for many more lakes per year. In spite of the 
higher uncertainty associated with model-based estimates from fewer observations, the improvements associated 
with the addition of only three aerial observations per lake highlighted the potential for improved precision with 
relatively few additional observations. Thus, the combination of GLMMs and extensive data collection from 
multiple sources could be used to estimate fishing effort in regions where intensive data collection for all fishing 
sites is infeasible, such as lake-rich landscapes. By using these methods of extensive data collection and model- 
based analysis, managers can produce frequently updated assessments of system states, which are important in 
developing proactive and dynamic management policies.   

1. Introduction 

Recreational fisheries are widespread and socioeconomically 
important, with about 118 million estimated participants in North 
America, Europe, and Oceania (Arlinghaus et al., 2015; Tufts et al., 
2015). Inland and marine recreational fisheries are responsible for 
substantial removal of biomass, but in many systems, insufficient data 
are available to make proactive management decisions with the goal of 
maintaining sustainable harvest (Cooke and Cowx, 2004; Ihde et al., 
2011). In addition, these fisheries are frequently open-access, leaving 

them particularly vulnerable to overfishing (Cooke and Cowx, 2004; Cox 
et al., 2002; Post and Parkinson, 2012). Anglers exhibit heterogeneous 
preferences, which leads them to adjust the location and intensity of 
their fishing effort in response to changing conditions. This complicates 
managers’ ability to predict fish population dynamics (Carruthers et al., 
2018; Wilson et al., 2020). Successful management of recreational 
fisheries therefore requires understanding fishing effort dynamics across 
different spatial and temporal scales. 

Recreational fisheries are diverse in their spatial extent; their dis
tribution across the landscape; and their availability of catch, effort, and 
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harvest data (FAO, 2012; Kaemingk et al., 2019). Different systems 
therefore rely on different methods for quantifying fishing effort dy
namics, which can include intensive and/or extensive observations of 
water bodies or access points. The number of water bodies surveyed 
depends on the abundance of water bodies present in the region as well 
as the budget limitations of the managing agency (e.g. Cass-Calay and 
Schmidt, 2009; Chizinski et al., 2014; Malvestuto et al., 1978). Intensive 
data collection on relatively few locations permits more in-depth sam
pling of these locations over a wide range of conditions. For example, 
access point creel surveys assign clerks to select water bodies or access 
points for stratified-random shifts over much of the year. During these 
shifts, clerks interview anglers and collect instantaneous counts of 
angler effort (Newman et al., 1997; Pollock, 1994). For landscapes 
where water bodies are relatively scarce, intensive data collection 
satisfactorily balances costs of data collection with accuracy of fishing 
effort and catch rate estimates. However, intensive data collection reg
imens can also leave many water bodies with no available data 
describing fishing effort, catch rates or harvest (Post et al., 2002). Many 
fisheries landscapes could therefore benefit from extensive data collec
tion, where fewer observations are collected per site, but more water 
bodies or access points are surveyed (Beard et al., 2011). Fisheries 
already applying these methods tend to rely on multiple data sources to 
find the right balance between collecting sufficient observations per site 
while also surveying as many sites as possible (e.g. Steffe et al., 2008). In 
contrast, many fisheries that have historically been classified as “small 
scale” are surveyed through intensive methods in spite of their large 
spatial extent and/or their high number of access points or fishing sites, 
such as lake districts (Deroba et al., 2007) and river systems (West and 
Gordon, 1994). The pool of harvesters within a recreational fisheries 
landscape is mobile and heterogeneous, and their fishing effort dy
namics cannot always be understood by treating small water bodies and 
fishing sites as independent fisheries (Matsumura et al., 2017; Martin 
et al., 2017). Many of these fisheries landscapes therefore benefit from a 
more extensive form of data collection and the integration of multiple 
data sources (e.g. Smallwood et al., 2012; Askey et al., 2018). 

Redistributing data collection to sample all water bodies or access 
points is not a trivial issue, particularly in lake-rich landscapes or for 
very large water bodies. For large water bodies with many access points, 
roving creel survey methods are used to cover more area (Roop et al., 
2018; West and Gordon, 1994). Additional extensive survey methods 
include the use of aerial surveys (Askey et al., 2018; Smucker et al., 
2010), cameras (van Poorten et al., 2015), and vehicle counters 
(Simpson, 2018; van Poorten and Brydle, 2018), often in combination 
with intensive creel methods (Hartill et al., 2016; van Poorten and 
MacKenzie, 2020). However, when adapting these mixed methods for a 
particular system, it will not always be possible to produce data 
compatible with design-based estimates of fishing effort. Traditional 
methods of estimating fishing effort rely on specific creel designs 
intended to accommodate variation in fishing effort by temporal strata, 
such as month or day of the week. Mean effort of a stratum is a mean of 
means: the mean of daily total effort means within the stratum (Newman 
et al., 1997). This mean expansion process leverages the central limit 
theorem to allow Gaussian error propagation to estimate confidence 
intervals around total fishing effort estimates (Särndal et al., 1978). 
Disparate systems use different creel designs to achieve this goal (e.g. 
Chizinski et al., 2014; Lockwood and Rakoczy, 2005; Smallwood et al., 
2012), and they are difficult to adapt to non-standard data from sup
plemental sources. 

In contrast, model-based estimation of fishing effort can more easily 
accommodate multiple data sources and is flexible to system-specific 
sampling methods. An example of earlier model-based approaches in
cludes a regression method predicting on-site estimates of total fishing 
effort from instantaneous observations collected by aerial surveys in 
British Columbia (Tredger, 1992). Askey et al. (2018) demonstrated that 
the previously employed regression method produced biased estimates 
and rigorously demonstrated the effectiveness of a generalized linear 

mixed model-based estimation approach using aerial surveys and on-site 
data collection from time-lapse cameras. Model-based approaches to 
estimating fishing effort across multiple fishing sites or water bodies are 
therefore not new methods, but they have generally been applied to test 
for differences in fishing effort dynamics among groups (Merten et al., 
2018), or to understand ecological and fishery influences on fish growth 
and productivity (Varkey et al., 2018). Similar models could instead be 
applied to extensively collected data from multiple sources to estimate 
waterbody-specific fishing effort over many potential fishing sites. 

Despite the availability of multiple data sources for estimating fish
ing effort, it is not always feasible to survey all fishing sites across a 
landscape. Models used to estimate total fishing effort could therefore be 
extended to predict angling effort based on empirical relationships be
tween fishing effort and abiotic and biotic lake variables. Studies of 
stated and revealed angler preferences have already identified lake 
characteristics that are particularly attractive to anglers. For example, 
large lakes that are easily accessible and present high-quality fishing 
opportunities are more likely to be chosen as angling sites (Hunt, 2005; 
Reed-Andersen et al., 2000; Hunt and Dyck, 2011). However, anglers 
have heterogeneous preferences, so it is not immediately clear whether 
these differences in characteristics among lakes may influence the 
overall distribution of angling effort (Beardmore et al., 2013; Breffle and 
Morey, 2000; Curtis and Breen, 2016; Kane et al., 2020). Lake-specific 
predictors could include some of the many lake morphometric and 
landscape variables known to influence fishing effort either directly or 
indirectly through their influence on fish community composition and 
abundance. In a study estimating total harvest across Wisconsin, Embke 
et al. (2020) used generalized linear mixed models (GLMMs) with lake 
characteristics as predictors to estimate harvest on unobserved lakes. If 
lake characteristics as well as the confounding effects of weather, time of 
day, and seasonality are also consistent predictors of fishing effort 
among lakes (i.e. Deroba et al., 2007), at least coarse estimates of fishing 
effort at unobserved lakes can be produced based on observed lake 
characteristics. 

We tested a model-based approach to estimating fishing effort using 
extensive data collected in Vilas County, Wisconsin. To accomplish this 
goal, we examined annual summer fishing effort predictions of GLMMs 
fit to three datasets. These datasets were collected using different 
methods that demonstrated tradeoffs between the number of observa
tions per lake and the number of lakes surveyed (Table 1). One dataset 
was classified as intensive because it included many observations of 
fewer lakes per year. The second and third datasets were extensive 
because they contained fewer observations per lake, but many more 
lakes were surveyed each year. The third dataset additionally included 
aerial survey observations of the same lakes to test for the value of 
including a supplemental data source. We completed a series of tests 
using these datasets to address the following questions: 1) When fit to 
extensive data, can models detect annual, seasonal, and daily changes in 
fishing effort? 2) How do fishing effort estimates derived from extensive 
observations compare to those derived from intensive observations? 3) 
How well can models fit to extensive data predict total fishing effort on 

Table 1 
Characteristics of the three datasets we evaluated when estimating lake-specific 
total fishing effort.   

Intensive 
dataset 

Extensive 
dataset 

Extensive dataset 
with aerial surveys 

Sampling methods On-site 
observations 

On-site 
observations 

On-site observations 
Aerial surveys 

Number of years 
surveyed 

25 2 2 

Number of lakes 
surveyed 

65 38 44 

Mean number of lakes 
surveyed per year 
(SD) 

4.9 (2.6) 21 (7.1) 29.5 (19.1)  
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unobserved lakes? 4) How can these model-based methods be applied to 
predict fishing effort across a fisheries landscape? 

2. Methods 

2.1. Study area 

All observations of angling effort took place in Vilas County, Wis
consin. Vilas County is part of the Northern Highlands Lake District 
(NHLD), a highly forested, lake-rich region known for its fishing tourism 
(Peterson et al., 2003). With increasing shoreline residential develop
ment and the continued effects of global climate change, the NHLD lake 
fisheries have shown marked changes in species composition and size 
structure (Christensen et al., 1996; Sass et al., 2006; G. Hansen et al., 
2015a, b; Embke et al., 2019). The high density of lakes in this region 
means that intensive creel data are collected infrequently for each sur
veyed lake. If accurate estimates of fishing effort could instead be 
derived from extensive data collected over more lakes, managers’ un
derstanding of effort dynamics at many lakes of interest could be 
updated more frequently. Vilas County has 1318 lakes, of which 175 
have public access points maintained by the WDNR (Wisconsin 
Department of Natural Resources, 2009). Since 1995, the Wisconsin 
Department of Natural Resources (WDNR) has conducted intensive creel 
surveys on 65 Vilas county lakes (Fig. 1, Table 1). Intensive data 
collection on lakes inhabited by walleye (Sander vitreus) in the Ceded 
Territory (the northern third of Wisconsin) was initiated by the WDNR 
and the Great Lakes Indian Fish and Wildlife Commission (GLIFWC) in 
1987 after the US Seventh Circuit Court of Appeals affirmed the 
off-reservation hunting, fishing, and gathering rights of Ojibwe tribal 
members. The WDNR annually selects among all lakes containing 
walleye using a stratified random design to complete adult walleye 
population estimates, age-0 walleye relative abundance surveys, and 
nine-month creel surveys. In addition, each year four “trend” lakes are 
selected, which are sampled every three years, and most other lakes are 
surveyed about once every ten years (Cichosz, 2019). The data collected 
from these surveys are used to manage the joint tribal spearing and 
recreational angling fishery for walleye in the Ceded Territory of Wis
consin (Hansen et al., 1991). 

2.2. Data collection 

Intensive observations of instantaneous boat counts were collected 
by the WDNR during 1995–2019 across 65 lakes using a stratified 
random survey design. On average, five Vilas County lakes were sur
veyed per year (Tables 1 and A1), and only lakes containing walleye 

were surveyed (Cichosz, 2019). Survey dates and times were stratified 
by month, weekend, and mornings and evenings. A creel clerk’s 40 -h 
workweek was randomly assigned to days and times based on these 
strata. In general, lakes were surveyed for nine months each and visited 
for about 20 creel shifts per month. November, March, and April were 
usually omitted from sampling due to perilous ice conditions. Instanta
neous counts were completed at two randomly selected times during 
each shift. Creel clerks circled the lake by boat, counting the number of 
anglers that were either actively fishing or known to be moving between 
fishing locations (Gilbert et al., 2013; Rasmussen et al., 1998). 

For our extensive experimental creel survey, we completed on-site, 
instantaneous counts of fishing activity at 38 lakes in Vilas County, WI 
from mid-May to mid-August of 2018 and 2019 (Fig. 1, Appendix A1). 
Sixty creel shifts in 2018 and 120 shifts in 2019 were stratified by 
weekends and weekdays as well as by morning (5:30 to 13:30) and 
evening (13:30 to 21:30) shifts. We randomly assigned at least four of 
these shifts to each lake, with the restriction that each lake needed to be 
surveyed at least once on a weekend or holiday. In addition, morning 
and evening shifts were required to take place at each lake. During each 
creel shift, we completed three instantaneous boat counts at randomly 
selected times. If randomly selected count times were less than one hour 
apart, count times were re-drawn until this criterion was met. If a count 
was selected to take place before sunrise or after dark, the count was 
instead completed at sunrise or sunset, respectively, and the new count 
time was recorded. On average, 13 instantaneous counts were 
completed per lake during the 6 months total of experimental creel 
surveys from 2018 and 2019 (Tables A1 and A2). We completed on-site 
instantaneous counts of fishing effort from a boat, counting the number 
of fishing boats and shore anglers who were actively fishing at the count 
time. For each boat or shore angler observed, we recorded whether or 
not they were angling, the number of passengers, and whether the boats 
were moving or stationary. Because we counted fishing vessels while the 
intensive creel survey counted anglers, we converted the intensive raw 
counts to an approximate number of fishing boats based on the mean 
number of passengers per boat observed during our extensive on-site 
counts (μ = 2.04, σ = 0.95). 

In addition, we completed three aerial surveys of the same 38 lakes 
(plus 6 others) on June 6, July 10, and July 27, 2019. Flights were 
scheduled based on pilot availability and weather conditions. Volunteer 
pilots flew a pre-planned flight path in low-wing, single-engine aircraft. 
The pilot circled each of the target lakes at an altitude of 760 m while the 
counts took place. Two passengers were present for data collection: one 
identifying lakes and recording counts and the second locating and 
counting boats. When conditions allowed, we used binoculars to identify 
boats containing anglers. We could not always visually identify fishing 

Fig. 1. Map of Vilas County, WI showing location of lakes intensively surveyed by WDNR (green), extensively surveyed by our experimental creel survey (blue), and 
surveyed by both (red) (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article). 
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boats, so unassigned stationary or slow-moving boats were therefore 
probabilistically classified as fishing or non-fishing based on the pro
portion of fishing boats among all stationary and slow-moving boats 
observed during on-site counts. We observed 62 % of stationary boats 
and 80 % of slow-moving boats to be fishing during our on-site counts, 
so each unassigned stationary and slow-moving boat was randomly 
assigned a classification with a 0.62 or 0.80 probability, respectively, of 
being classified as a fishing boat. 

2.3. Traditional mean expansion estimates of fishing effort 

Mean expansion estimates of total fishing effort from intensive data 
compute the sum of mean fishing effort over several strata. Every month 
of observations makes up one level, and then each month is subdivided 
into weekday and weekend/holiday strata. Two counts of fishing effort 
were collected every shift, and these were averaged to estimate each 
day’s mean effort. Daily mean effort was multiplied by the number of 
daylight hours to estimate that day’s total boat hours. The mean of this 
daily mean total effort was then calculated separately by month and 
weekday strata, and the sum of these grand means estimated the lake 
year’s total fishing effort. The standard deviation (SD) of angler counts 
within a stratum was completed according to Rasmussen et al. (1998), 
and summer fishing effort SD for each lake was calculated as the square 
root of the summed variance of all strata. This protocol of mean 
expansion has been demonstrated to accurately estimate total annual 
fishing effort relative to a census count (Newman et al., 1997). We 
calculated fishing effort from intensive data only for summer months 
between May and August. Seven lakes were surveyed intensively and 
extensively on different years. This overlap allowed us to compare the 
accuracy and precision of mean-expansion total summer fishing effort 
estimates with our model-based estimates from extensive data. 

2.4. When fit to extensive data, can models detect annual, seasonal, and 
daily changes in fishing effort? 

We modeled instantaneous boat counts as a response to the effects of 
lake, year, day of year, and time of day using GLMMs. We tested the fit of 
different distributions to our count data using the R package “fitdistr
plus” (Delignette-Muller and Dutang, 2015) in R version 3.6.1 (R Core 
Team, 2019). Because the count data were overdispersed, we fit nega
tive binomial regressions with a log link function. We used autocorre
lation function (ACF) plots of standardized residuals to detect significant 
temporal autocorrelation. Random intercepts incorporated variation 
due to lake identity that was not accounted for in the explanatory var
iables (Zuur et al., 2009). By including random intercepts to accom
modate lake-specific variation in fishing effort, we allowed the model to 
pool information across lakes in order to detect general patterns in 
seasonal and daily fishing effort dynamics. This model was then used to 
predict hourly instantaneous counts across a summer for each lake. The 
area under the curve of these predictions then provide estimates of 
annual summer fishing effort that can be compared to estimates ob
tained by mean expansion of intensive data. 

We used two datasets, the intensive WDNR observations and the 
extensive experimental data, and compared the ability of GLMMs to 
detect changes in fishing effort on three subsets of this data: (1) the 
intensive observations, (2) the extensive on-site observations, and (3) 
our combined extensive on-site and aerial survey observations. We 
completed forward model selection of a pre-specified set of increasingly 
specific predictors by comparing Akaike Information Criterion (AIC) of 
candidate models. We used a ΔAIC cutoff of -2 for selecting the best- 
fitting model. The simplest model consisted of only a random inter
cept by lake. We sequentially added in effects for year, day of year, and 
hour of day. Seasonality and time of day are already well known pre
dictors of fishing effort (e.g. Mann and Mann-Lang, 2020; Powers and 
Anson, 2016). By completing forward-selection of nested models, we 
were able to compare the ability of different datasets to detect 

increasingly granular dynamics of fishing effort. For the models fit to 
intensive observations, the year effect was a second random intercept. 
For the two extensive datasets conducted only over two years, we 
included a year fixed effect using a dummy variable. To aid conver
gence, all continuous predictor variables were centered and scaled. We 
fit these models using the lme4 package version 1.21 (Bates et al., 2015). 
Validity of the models was assessed using the DHARMa package v.0.2.6 
(Hartig, 2019), and marginal and conditional r2 were estimated using 
the trigamma method with the MuMIn package v.1.43.15 (Barton, 
2019). 

2.5. How do fishing effort estimates derived from extensive observations 
compare to those derived from intensive observations? 

Before comparing model-based to mean expansion predictions, we 
first validated that generalized linear models fit separately to each lake 
year of intensive data produced total fishing effort estimates comparable 
with those produced through mean expansion (Appendix A2, Fig. A1 
and A2, Tables A3 and A4). After this validation, we then tested the 
accuracy and precision of total summer fishing effort estimates derived 
from each of the candidate GLMMs fit in section 2.4. We compared 
predictions generated by each GLMM with the estimates calculated by 
mean expansion for the seven lakes surveyed in both datasets. Hourly 
predictions of instantaneous boat counts from May 1 to August 31 for 
these lakes were obtained by predicting boat counts at each daylight 
hour of each day. Continuous prediction variables were centered and 
scaled according to the mean and standard deviation of the original fit 
data. Predictions for all models and datasets were produced for all 
daylight hours of summer, conditional on a mean year effect using the 
merTools v.0.5.0 R package (Knowles and Frederick, 2019). The area 
under the curve of each lake’s summer predictions was then calculated 
using the trapezoidal rule, which produced an estimate of total summer 
fishing effort for each lake. By bootstrapping the model predictions for 
5000 iterations, we obtained a mean estimate of total fishing effort as 
well as upper and lower 95 % prediction intervals. This process was 
repeated for each of the candidate models. These prediction intervals of 
model-based estimates of fishing effort were then compared to fishing 
effort estimates calculated through mean expansion of intensive data. To 
summarize correspondence between predicted and observed fishing 
effort for each dataset and model, we compared indices of relative ac
curacy and precision (IRA and IRP, defined below) of each model’s pre
dicted total summer fishing effort versus expanded mean estimates as in 
Steffe et al. (2008). Some lakes were intensively surveyed over several 
years. For these lakes, we compared model-based total effort estimates 
to the mean of all years’ mean expansion estimates. The IRA specifies the 
similarity of two estimates relative to the magnitude of the estimate of 
interest. A positive IRA indicates that the model-based estimate is higher 
than that of the mean expansion by some proportion of its overall value, 
while a negative value indicates a lower estimate. 

IRA =
GLMM estimate − Mean expansion estimate

Mean expansion estimate
× 100 

The IRP describes the similarity of each estimates’ relative standard 
error (RSE) as a percentage of the RSE of the estimate of interest. A 
positive IRP value indicates that the model-based estimate is more pre
cise than that of the mean expansion, or in other words, its standard 
error is a smaller proportion of its estimate. 

RSE =
SEEstimate

Estimate
× 100  

IRP =
RSEMean expansion − RSEGLMM estimate

RSEMean expansion
× 100 

Mean IRA and IRP were then calculated for all lakes surveyed inten
sively and extensively. 
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2.6. How well can models fit to extensive data predict total fishing effort 
on unobserved lakes? 

We chose the most accurate predictive model from section 2.5 and 
added covariates describing lake characteristics. We chose variables 
representing landscape predictors of boating density as described by 
Hunt et al. (2019). Hunt et al. (2019) modeled the distribution of 
boating activity in Ontario, Canada as a function of lake surface area, 
accessibility, human development, and fishing quality. We restricted 
ourselves to data that were easily obtained for all lakes in a fisheries 
landscape. Lake surface area is a well-established predictor of fishing 
effort (e.g. Hunt, 2005), and it is available for all Wisconsin lakes. We 
also had access to lake-specific availability of public boat ramps and 
presence of walleye, a popular target species. Each of these variables 
were obtained from the WDNR lake database (Wisconsin Department of 
Natural Resources, 2009). Distance from a resident pool of anglers, 
either from a nearby urban center or from lake residents, has also been 
demonstrated to predict fishing effort (Hunt et al., 2011; Wilson et al., 
2020). However, given the low and relatively homogeneous population 
density of Vilas County (Peterson et al., 2003; U.S. Census Bureau, 
2010), we judged housing density of the lakeshore to be a more influ
ential source of nearby anglers. We calculated building density (build
ings per km shoreline) within 200 m of each lake’s shoreline using GIS 
data obtained from the WDNR and Vilas County. As an additional 
measure of accessibility, distance to the nearest secondary road was 
calculated as Euclidean distance from the centroid of a lake to the closest 
point of the road. Latitude and longitude of each lake was obtained from 
the WDNR 24 K Hydro Geodatabase (“24 K Hydro Full Geodatabase for 
Download,” 2017), and road data came from the United States 
Geological Survey National Transportation Dataset for Wisconsin 
(“USGS National Transportation Dataset Downloadable Data Collection, 
” 2017). Continuous variables were scaled and centered. These models 
were fit as described in section 2.4, and p-values were estimated based 
on Wald tests with the null hypothesis that the predictors have no effect 
on fishing effort and an alpha = 0.05. 

Models’ ability to predict total effort on unobserved lakes was tested 
using leave-one-group-out (LOGO) cross validation for models fit to 
intensive and extensive datasets. All observations from each lake were 
iteratively removed from the dataset, the models were refit, and the 
missing values predicted. These predictions were bootstrapped for 5000 
iterations to obtain upper and lower 95 % prediction intervals for the 
effort estimates. The IRA and IRP of these estimates were then estimated 
relative to those produced by mean expansion of intensive data. 

2.7. How can these methods be applied to predict fishing effort across a 
fisheries landscape? 

The best-performing predictive GLMM was used to estimate total 
summer fishing effort across all lakes and years surveyed either inten
sively or extensively in Vilas County. We fit the model to the combined 
intensive and extensive datasets, including random lake and year effects 
and fixed effects of weekend, day of year, and a dummy variable indi
cating the survey method. A full summer of fishing effort was then 
predicted for each lake over each year represented in the full combined 
dataset. We obtained 95 % prediction intervals by bootstrapping the 
model predictions for 5000 iterations. Predictions were completed for 
100 lakes over 25 years. 

3. Results 

3.1. When fit to extensive data, models detect presence and shape of 
annual, seasonal, and daily changes in fishing effort, but underestimate 
their magnitude 

The best-fit models included a year effect and quadratic effects of day 
of year and hour of day, which suggests that seasonal and daily patterns 

of fishing effort were detected by models fit even with few observations 
per lake (Table 2). The quadratic effect of time of day was the best fitting 
of all of the functional forms tested for this variable (Tables A5-A7). 
Weekends and holidays had a consistently positive effect on fishing 
effort for all datasets. However, the models fit to the intensive dataset 
were the only models to detect significant quadratic effects of day of 
year and hour of day on fishing effort (Tables A8-A10). Therefore, while 
including annual, daily, and hourly effects improved model fit for all of 
the data sets, it was only the annual and weekend effects that were 
detectable in the models fit to extensive data. Fixed effects such as day of 
year, weekend/weekday, and hour of day, explained very little variance 
in fishing effort (Table 3). Although lake and year random effects 
consistently explained around 40 % of the variance in fishing effort, 
marginal r2 values for hourly and daily fixed effects were very low, 
indicating that they explained < 5% of the variance in instantaneous 
fishing effort. 

3.2. Models fit to extensive data produce similar estimates to mean 
expansion of intensive data, with some reduction in accuracy and precision 

With the exception of Irving Lake (IV), all models fit to the extensive 
data produced fishing effort estimates with prediction intervals that 
overlapped with those produced by mean expansion of intensive data 
(Fig. 2). These models all produced mean estimates of fishing effort 
within 20 % of the value of those produced by mean expansion of 
intensive data (Table 4). The best performing model for the extensive 
dataset, which included day of year and weekend fixed effects, produced 
estimates that were, on average, within 11 % of the mean expansion 
estimate. As expected, when the models were fit to intensive data, they 
produced estimates of fishing effort that were nearly identical to those 
produced by mean expansion (Table 4, Fig. 2). 

On an individual lake basis, the effects on accuracy of increasing 
model complexity were relatively subtle and depended on lake identity. 
Fishing effort on Irving Lake (IV), for example, was continuously 
underestimated by all models fit to extensive data. Estimates for Little 
Arbor Vitae Lake (LV), however, were quite accurate for simple models 
but became more negatively biased as more parameters were added. 
Note the differences in total fishing effort predictions for this lake be
tween Figs. 2A and 2D. The addition of aerial survey data tended to 
marginally improve the mean accuracy of predictions for all lakes. More 
notably, aerial survey data on average improved the precision of fishing 
effort estimates as measured by IRP (Table 4). Prediction intervals of 
model estimates based only on on-site extensive observations tended to 
be, on average, 7–10 times wider than the confidence intervals associ
ated with mean expansion. Adding only 3 aerial observations per lake 
reduced the average width of estimate prediction intervals by nearly 
half. This improvement in precision suggests that a moderate number of 
additional samples could result in a substantial reduction in uncertainty 

Table 2 
AIC values for each model fit to each dataset. Each model contains its listed 
predictors as well as all predictors listed for the models above it. Values for ΔAIC 
are the difference between that model’s AIC and that of the model containing 
only a random lake effect. The best fit model for all datasets is in bold.  

Model Intensive data On-site extensive 
data 

On-site and aerial 
survey extensive 
data  

AIC ΔAIC AIC ΔAIC AIC ΔAIC 

(1|Lake) 90,206  1360.1  1725.8  
+ Year  89,883 − 323 1350.2 − 9.9 1713.3 − 12.5 

+ Day of year+
Day of year2 +

Weekend  

88,766 − 1440 1346.6 − 13.5 1708.5 − 17.3 

+ Hour of day+
Hour of day2  

87,948 ¡2258 1338.9 ¡21.2 1700.0 ¡25.8  
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associated with these estimates of fishing effort. An exaggerated version 
of this change can be seen in the predictions for Oxbow Lake (OB), on 
which fewer on-site observations were recorded. When three aerial 
observations were added for this lake, the span of the estimate’s pre
diction interval decreased from a width of 16,147 boat hours to 7724 
boat hours, or over 50 % (Fig. 2C). 

Intensive and extensive datasets were collected on different years, 

potentially limiting our ability to compare estimates of fishing effort. To 
investigate the influence of year effects on our estimates, we calculated 
estimates of total fishing effort for each year surveyed using our best- 
performing model. Fishing effort estimates varied substantially be
tween years, especially for Little Arbor Vitae and Oxbow lakes (Fig. 3). 
These two lakes had produced the least accurate model-based pre
dictions conditional on a mean year effect, but for each of these lakes, 
the total effort prediction produced for one year was substantially closer 
to the mean expansion estimates. Much of the difference between mean 
expansion and model-based fishing effort estimates could therefore be a 
result of the mismatch in years between intensive and extensive 
sampling. 

3.3. Model-based predictions of fishing effort on out-of-sample lakes 
showed mixed performance 

Predicting fishing effort for specific unobserved lakes required add
ing covariates describing lake characteristics that may influence fishing 
effort. Adding these lake variables caused marked changes to the 
model’s conditional and marginal r2 values (Table 5). Although the fixed 
effects in GLMMs predicting fishing effort from year, seasonal, and daily 
effects explained only around 5% of the variance in fishing effort, fixed 
effects in models containing lake variables explained between 20 and 30 
%. Because these lake variables took over some of the explanatory 
ability previously held by the random effects, these models could predict 
at least a portion of the variation in out-of-sample lakes, i.e. lakes 
without their own random intercept. 

The effect size and significance of these lake variables depended on 
the dataset to which the model was fit (Table 5). Lake area had a sig
nificant positive effect on instantaneous fishing effort in models fit to all 
three datasets. Distance from lake to the nearest secondary road had no 
significant effect in any models. In the model fit to intensive data, all 
lake variables with the exception of distance to road and walleye pres
ence have a significant effect on fishing effort. In the model fit to 
extensive data, however, lake area and walleye presence were the only 
significant predictors. 

The accuracy of the total fishing effort predictions produced during 
LOGO cross validation were mixed (Fig. 4). On average, the model fit to 
the extensive dataset containing aerial survey data produced estimates 
of fishing effort within 11 % of those produced by mean expansion 
(Table 6). However, this small IRA value was largely due to the very high 
predictions for Black Oak Lake (BK) and the very low predictions for 
Little Arbor Vitae (LV) offsetting each other. Model-based predictions of 

Table 3 
Marginal and conditional r2 values for each model fit to each dataset. Each model contains its listed predictors as well as all predictors listed for the models above it.  

Model Intensive data On-site extensive data On-site and aerial extensive data  

Marginal r2  Conditional r2  Marginal r2  Conditional r2  Marginal r2  Conditional r2  

(1|Lake) 0.36  0.38  0.39 
+ Year   0.39 0.035 0.46 0.021 0.43 

+ Day of year+ Day of year2 + Weekend  0.023 0.43 0.047 0.50 0.031 0.45 

+ Hour of day+ Hour of day2  0.044 0.46 0.065 0.52 0.044 0.46  

Fig. 2. Comparison of total summer fishing effort estimates between mean 
expansion (black), and area under the curve of GLMM predictions fit to 
extensive data (colors). Parameters added to each model are indicated by the 
labels on the right. Points are mean estimates, and bars show 95 % prediction 
intervals. Lakes that were intensively surveyed multiple years by the WDNR 
have multiple estimates depicted along with their 95 % prediction intervals. 

Table 4 
Mean indices of accuracy and precision for model-based estimates of total summer fishing boat hours relative to mean expansion estimates. (N = 7) Each model 
contains its listed predictors as well as all predictors listed for the models above it.  

Model Intensive data On-site extensive data On-site and aerial extensive data  

Mean IRA(SD)  Mean IRP (SD)  Mean IRA(SD)  Mean IRP (SD)  Mean IRA(SD)  Mean IRP (SD)  
(1|Lake) 7.77 (6.66) − 53.34 (27.07) − 5.58 (44.03) − 777.03 (331.26) 1.80 (42.85) − 537.65 (148.04) 
+ Year  4.54 (12.17) − 92.01 (33.14) 18.11 (58.50) − 790.14 (335.32) 11.79 (48.67) − 544.33 (134.47) 

+ Day of year+ Day of year2 + Weekend  − 1.16 (11.89) − 89.73 (33.02) − 8.28 (51.51) − 916.03 (362.26) − 11.01 (39.41) − 629.51 (139.96) 

+ Hour of day+ Hour of day2  − 4.82 (12.54) − 76.05 (39.63) − 11.45 (46.64) − 930.99 (335.73) − 13.86 (36.17) − 649.57 (137.16)  
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fishing effort were similar to the mean expansion estimates for Irving 
(IV), Birch (BH), Oxbow (OB), and White Birch (WB) lakes. However, 
this model produced much less accurate predictions for Allequash (AQ), 
Black Oak, and Little Arbor Vitae lakes. These results could have stem
med from two problems: 1) no lake-specific random intercept was 
available for the out-of-sample lakes, or 2) the selected lake variables 

were inconsistent predictors of fishing effort. 
To evaluate these two options, the LOGO cross validation process 

was repeated while retaining the aerial survey observations for the “out- 
of-sample” lake. This process simulated the scenario of predicting fish
ing effort based on limited observations as well as lake variable pre
dictors. Retaining these observations, however, did not substantially 

Fig. 3. Total summer fishing effort estimates 
from mean expansion (black) and GLMM pre
dictions incorporating lake, year, day of year, 
and weekend effects (colors) for every year the 
lake was surveyed. GLMM predictions from 
extensive data were always produced for the 
summers of 2018 and 2019, and mean- 
expansion estimates and GLMM predictions 
from intensive data are depicted for the years 
intensively surveyed. Points are mean estimates 
for each year observed by the dataset, and bars 
show 95 % prediction intervals.   

Table 5 
Parameters of a GLMM predicting fishing effort from seasonality and lake variables as fit to each dataset. Parameters with significant effects are in bold.  

Model parameters Intensive data On-site extensive data On-site and aerial extensive data  

Coefficient (SE) P value Coefficient (SE) P value Coefficient (SE) P value 
Intercept − 0.66 (0.55) 0.23 − 1.51 (0.39) 0.0001 − 1.35 (0.31) <0.0001 
Lake area (ha) 0.56 (0.12) <0.0001 0.47 (0.13) 0.0002 0.50 (0.10) <0.0001 
Building density 0.25 (0.10) 0.01 0.09 (0.13) 0.50 0.06 (0.10) 0.55 
Boat ramp present 0.71 (0.22) 0.001 0.14 (0.42) 0.74 0.19 (0.33) 0.56 
Walleye present 0.72 (0.54) 0.18 1.40 (0.34) <0.0001 1.23 (0.26) <0.0001 
Distance to road − 0.02 (0.09) 0.78 − 0.06 (0.11) 0.61 − 0.10 (0.09) 0.25 
Year 2018   ¡0.25 (0.09) 0.006 ¡0.21 (0.06) 0.0009 
Day of year 1.21 (0.09) <0.0001 1.06 (0.78) 0.17 0.75 (0.58) 0.27 
Day of year2 ¡1.22 (0.09) <0.0001 − 1.13 (0.77) 0.14 − 0.85 (0.67) 0.21 
Weekend 0.47 (0.01) <0.0001 0.21 (0.11) 0.05 0.18 (0.09) 0.04 
Marginal r2  0.23 0.26 0.28 

Conditional r2  0.43 0.34 0.35  

Fig. 4. Out-of-sample total summer fishing effort predictions for lakes that were surveyed both extensively and intensively. Lakes that were intensively surveyed 
multiple years by the WDNR have multiple estimates depicted along with their 95 % prediction intervals. Estimates were predicted based on lake characteristics, 
seasonality, and the grand mean random lake intercept through LOGO cross validation. 
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improve the predictions of total fishing effort (Figure A4). The models fit 
to the intensive dataset had to be simplified due to an upper limit on 
computation time. Rather than including both year and daily covariates, 
the model included only a year random effect, in addition to the lake 
random effect and lake characteristics that were included in the other 
models. Out-of-sample predictions of models fit to intensive data tended 
to reflect those produced by extensive data, with the exception of Irving 
Lake (IV), where these predictions were much closer to the mean 
expansion value. 

3.4. Model-based methods can integrate multiple data sources to predict 
fishing effort across a fisheries landscape 

By fitting a GLMM to the combined intensive and extensive datasets, 
we could fit a random intercept to each lake and year surveyed and then 
predict total summer fishing effort across all lakes for each of the years 
represented in the datasets. Average hourly fishing effort is highly het
erogeneous across the county (Fig. 5A, Table A11). Several lakes stood 
out as having exceptionally high mean hourly fishing effort. For 
example, Lac Vieux Desert and Little Saint Germain Lake had 603 % and 
518 % higher effort, respectively, than the mean. In addition, while 
fishing effort varied by year, no trend in overall fishing effort was 
evident (Fig. 5B). Fishing effort in 1995, however, was very high 
compared to other years. 

4. Discussion 

Extensive data collection from multiple data sources is an effective 
tool for managers to understand fishing effort dynamics across a fish
eries landscape. A model-based approach to analyzing this data allows 
managers to leverage multiple sources of extensive fishing effort data 
available within their system. By relying on extensively collected data, 
managers can estimate total fishing effort for many more fishing sites or 
water bodies than would be possible under an intensive sampling 
regimen. Further coverage of fisheries landscapes by spatially extensive 

approaches could be achieved through supplemental data sources such 
as aerial surveys, camera traps, and drones. With further understanding 
of predictors of lake use, out-of-sample estimates of fishing effort can 
further improve landscape coverage. 

4.1. Evaluating the success of extensive data collection for model-based 
estimates 

On average within the seven lakes evaluated, a model incorporating 
the effects of lake identity, year, day of year, and weekends predicted 
total summer fishing effort estimate values within 11 % of the value of 
those obtained by mean expansion. Because the extensive dataset con
tained fewer observations per lake, some reduction in accuracy was 
expected. Further, the intensive and extensive observations took place 
on different years. We therefore remain encouraged that estimation 
methods using much less data produced similar results to data-rich mean 
expansion. Mean differences in accuracy among the seven lakes sur
veyed intensively and extensively were primarily driven by a tendency 
to underestimate fishing effort on Irving and Little Arbor Vitae lakes and 
to overestimate fishing effort on Oxbow Lake. The underestimation of 
fishing effort for Irving Lake highlighted an important consideration for 
the use of extensively collected data. By chance, two out of four of our 
experimental creel survey shifts at this lake took place during inclement 
weather. As a result, the mean instantaneous boat counts collected for 
this site were not representative of typical fishing effort, and these 
predictions showed no overlap of prediction intervals with those of 
mean expansion. When fishing effort estimates were based only on aerial 
survey data, which by necessity took place during fair weather, pre
dictions of a simple GLMM were very similar to those of mean expansion 
of intensive data (Figure A3). The effects of poor weather could be 
accounted for in future applications by including a covariate for severe 
weather effects in the GLMM. Weather conditions did not obviously 
influence observations on Little Arbor Vitae, but a higher variation in 
total annual effort for this large, busy lake may have contributed to the 
reduced accuracy and precision of its model-based total fishing effort 

Table 6 
Mean indices of relative accuracy and precision of out-of-sample model predictions relative to mean expansion estimates of intensive data. (N = 7).  

Model Intensive data On-site extensive data On-site and aerial extensive 
data  

Mean 
IRA(SD)  

Mean IRP 

(SD)  
Mean 
IRA(SD)  

Mean IRP 

(SD)  
Mean 
IRA(SD)  

Mean IRP 

(SD)  

(1|Lake)+ Year+ Day of year+ Day of year2 + Weekend+ Lake area+
Building density+ Boat ramp+ Walleye presence+ Distance to road  

− 26.39 
(76.33) 

80.03 
(45.15) 

− 16.30 
(64.55) 

− 76.55 
(8.84) 

− 10.78 
(58.80) 

− 68.84 
(10.21)  

Fig. 5. Lake-specific values of the random intercept for each of the 100 lakes surveyed either intensively or extensively in Vilas County, WI (A), and a time series of 
total annual summer fishing effort across each of these lakes for every year of observations (B). 
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estimates. 
Oxbow Lake produced fishing effort estimates with extremely wide 

prediction intervals. Only 6 instantaneous counts of fishing effort (3 on- 
site, 3 aerial) took place on this lake, less than half the number of ob
servations collected for other lakes, which likely explains the discrep
ancy in total effort estimates. Although it was only possible to evaluate 
predictions for a small number of lakes, these examples demonstrate 
some of the strengths and limitations of our spatially extensive, model- 
based method. An extensive data collection scheme can produce 
reasonably accurate estimates of total fishing effort, but lake specific 
fishery characteristics and chance conditions during the survey will in
fluence the optimal distribution of observations. 

Our results highlight the tradeoffs that managers face in designing 
surveys to estimate lake-specific fishing effort. For landscapes where 
potential fishing sites are numerous, conducting extensive rather than 
intensive surveys may allow improved understanding of fishery dy
namics across a broader scale. If, for example, an agency is limited to 
500 observations for one summer, there are tradeoffs to consider when 
deciding how many lakes over which to spread those observations. 
These data could be used to obtain a highly accurate estimate for three 
lakes by following the traditional mean expansion protocol. In this case, 
each of the three lakes would be surveyed on 80 days of the summer with 
2 instantaneous boat counts on each day (i.e., 3 lakes x 80 days x 2 
observations per day = 480 observations). Alternatively, the agency 
could survey 31 lakes, spending 8 days surveying each one and 
completing two instantaneous fishing effort counts per day (i.e. 31 lakes 
x 8 days x 2 observations per day = 496 observations). Based on our 
results, transitioning from an intensive sampling regime to extensive 
sampling should result in, on average, a 3x increase in the width of the 
prediction intervals, but, in this example, a more than order of magni
tude increase in the total number of lakes for which effort estimates are 
available. The acceptability of these tradeoffs in accuracy and precision 
associated with greater water body coverage will depend on the man
agement priorities for the region in question. 

Some limitations exist in our ability to compare our estimates of 
fishing effort from extensive data collection to traditional mean expan
sion of intensive data. When evaluating the accuracy of model-based 
total fishing effort predictions, we compared prediction intervals for 
an average survey year with the confidence intervals of the expanded 
mean total effort calculations. There was no way to account for the effect 
of the year of the intensive survey when calculating indices of relative 
accuracy and precision, and year effects appear to be the reason for 
much of the difference in total fishing effort estimates. An additional 
design-related limitation is the relatively small number of lakes avail
able for comparison of model-based with mean-expansion total effort 
estimates. Our summary statistics of IRA and IRP generalize the accuracy 
and precision of estimates within the seven lakes surveyed intensively 
and extensively, but we have no way of knowing the accuracy and 
precision of total fishing effort estimates for the other 31 lakes that were 
extensively surveyed. We can, however, compare our methods and re
sults with those of Askey et al. (2018). Askey et al. (2018) rigorously 
validated the use of GLMM-based estimates of fishing effort with 
different sample sizes selected from a large dataset collected by aerial 
surveys and time-lapse cameras. The smallest sample sizes tested in their 
article were 10 and 20 observations. Within our limited selection of 
lakes with extensive and intensive data available, we found similar mean 
percent inaccuracies for our total effort estimates. 

4.2. Opportunities for further landscape coverage 

Total fishing effort estimates can be improved by integrating sup
plemental data sources, such as aerial surveys. By including only three 
additional aerial observations per lake, we substantially improved the 
accuracy and precision of our estimates. Even without including on-site 
observations, a small number of aerial observations per lake produced 
reasonably accurate, if coarse, estimates of total fishing effort 

(Figure A3). Aerial surveys are ideal for measuring the distribution of 
fishing effort across many lakes. This method is particularly useful for 
surveying fisheries with a large spatial extent, such as lake districts 
(Askey et al., 2018; Hunt et al., 2019; Tredger, 1992), major river sys
tems, (Sindt, 2012) and marine and Great Lakes fisheries (Lockwood and 
Rakoczy, 2005; Zellmer et al., 2018). Despite its strengths, this method 
may be too expensive to implement consistently in many fisheries sys
tems and can be limited by severe weather conditions. 

Traffic counters and boat launch cameras have also been used to 
quantify fishing effort and boat traffic (Hunt and Dyck, 2011; Simpson, 
2018; van Poorten et al., 2015; van Poorten and Brydle, 2018). These 
methods can passively collect effort data without the need for creel 
clerks, but cameras and counters are still expensive and prone to 
vandalism (van Poorten et al., 2015). The use of drones in fisheries 
science has been advocated (Kopaska, 2014), and they have been suc
cessfully used for identifying derelict or illegal fishing gear (Bloom et al., 
2019), counting fish in shallow rivers (Tyler et al., 2018), and moni
toring marine protected areas (Miller et al., 2013). Privacy concerns and 
aviation laws, however, complicate their use in monitoring angling ac
tivity for inland fisheries (Duncan, 2016; Lally et al., 2019). Although 
each of these methods has costs and benefits, they are all potentially 
fruitful supplemental data sources for model-based estimates of angler 
effort for different fishery systems. 

As we demonstrated, fishing effort data collected through an exten
sive sampling scheme from multiple sources can be used to understand 
differences in fishing effort across a broad spatial and temporal scale. 
Through two years of extensive data collection using on-site and aerial 
observations, we added coverage of 44 lakes to the combined intensive 
and extensive fishing effort dataset describing Vilas County. Based on 
the year effects estimated from 25 years of intensive data, we were able 
to predict total fishing effort for all lake-year combinations. Although 
the empirical data does not exist to validate these estimates, this analysis 
remains a useful demonstration for the potential of extensive data 
collection and GLMM-based analysis for estimating fishing effort across 
a lake-rich landscape. Further annual extensive data collection would 
quickly expand this coverage, as well as allow for the direct comparison 
of fishing effort between years on a broader scale. These data also have 
promise for detecting seasonal and daily patterns in fishing effort, which 
can assist fisheries managers in choosing optimal times for management 
interventions. 

As we found, however, a granular understanding of shifts in angler 
effort dynamics requires more data than we collected in our extensive 
sampling scheme. By allowing partial pooling of observations between 
lakes using lake random intercepts, some generalizable patterns were 
observed, but more observations per year may be needed to estimate the 
magnitude of seasonal and daily effects. Alternatively, different lakes 
may have different diel and seasonal fishing effort patterns. Although 
the extensive creel survey included fewer lakes than the intensive sur
vey, a wider variety of lakes were surveyed, including lakes with no 
walleye population, no boat ramp, and lakes with smaller surface areas. 
Because of this greater variation in lake characteristics, concurrent dif
ferences in diel and seasonal fishing effort patterns may have been 
washed out to non-significance when the GLMMs were fit. In this case, 
more intensive data collection with more observations per lake may be 
required to understand lake-specific seasonal and daily patterns. A hy
pothetical fisheries manager is therefore left to decide whether their 
goals are best served by investing their limited resources in extensive 
data collection over a wider spatial extent or intensive data collection 
within a limited number of systems. 

This question of appropriate tradeoffs could be sidestepped if man
agers could effectively predict fishing effort for unobserved lakes based 
on lake characteristics. We attempted to predict unobserved fishing 
effort using easily obtained data, with mixed results. Model predictions 
overlapped with mean expansion estimates for five out of the seven lakes 
tested, but total fishing effort for the other two were substantially over- 
or underestimated. Lakes associated with inaccurate predictions did not 
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have any obvious characteristics in common that could explain this 
discrepancy. These results could be explained by our use of only easily 
obtained predictor variables, or they could be an indication that lake 
characteristics are not consistent, linear predictors of lake-specific 
fishing effort. We chose lake variables that aligned with characteristics 
found to predict recreational boating density by Hunt et al. (2019), 
including lake surface area, walleye presence, and indices of human 
development and accessibility. Differences in sampling frame between 
our intensive and extensive data collection resulted in differences in 
parameter values between models fit to different datasets. For example, 
intensive data collection in Wisconsin takes place only on lakes con
taining walleye. Because no contrast was available for this parameter, no 
walleye effect could be tested. In summer, walleye are also almost 
exclusively available to boat anglers, potentially explaining the presence 
of a boat ramp effect in the intensive but not the extensive dataset. 
Distance to secondary road had no effect on instantaneous fishing effort 
in any dataset. Most likely, this result stems from measuring distance to 
road from the centroid of each lake. This metric does not account for the 
location of boat launches, so the nearest secondary road as measured 
here may still be inconveniently far away from any access points. Po
tential explanations for the absence of a building density effect in the 
extensive data are less clear. The lakes surveyed for both datasets had a 
similar range in building density values (0–70 buildings per km in the 
intensive data and 0–80 buildings in the extensive data). It is possible 
that, similar to diel and seasonal patterns, housing density has a 
different effect on fishing effort for different lakes. Not all lake residents 
are interested in fishing, and the presence of some building types such as 
resorts may be a better predictor of resident fishing effort than the 
presence of family homes. 

Indicators of fishing quality such as angler catch rates or fish popu
lation estimates, rather than indirect measurements of accessibility, may 
improve the predictive ability of these models, but these data are labor- 
intensive to produce and therefore did not exist for every lake in our 
extensive dataset. By applying model-based fishing effort predictions 
over every lake- year combination in the combined intensive and 
extensive datasets, we identified a handful of extremely high fishing 
effort lakes, which allowed us to explore potential commonalities be
tween them. The primary characteristic these lakes had in common was 
their surface area; the lakes with highest mean fishing effort ranged from 
350 to over 1600 ha in surface area (Table A11). In contrast, no obvious 
correlation was found between fishing effort and population abundance 
or catch rates of popular target species. However, very high fishing effort 
lakes all tended to have moderate, rather than high or low, catch rates 
for panfish and muskellunge (Figures A5-A8). Most likely, predicting 
fishing effort based on lake characteristics would require accounting for 
nonlinear responses and interactions of lake characteristics, potentially 
using nonparametric methods such as random forests (e.g. van Poorten 
et al., 2013). Although out-of-sample predictions of fishing effort were 
not consistently accurate, we argue that extensive data collection for 
GLMM-based estimates of total fishing effort is a promising approach for 
understanding effort dynamics in highly distributed and/or data poor 
fisheries. 

4.3. Applications to fisheries management 

Our modeling approach proved effective for predicting angler effort 
across a fisheries landscape; however, other metrics derived from 
traditional angler intercept surveys, such as angler catch rates and es
timates of total catch, are also important for fisheries management. That 
said, our approach could compliment existing efforts to address these 
important, additional aspects of fisheries. For example, recent research 
by Embke et al. (2020) used GLMMs to produce recreational harvest 
estimates for 267 lakes that were surveyed intensively as well as all 
unobserved inland lakes across Wisconsin based on abiotic variables and 
an angler access metric. Coarse estimates of fishing effort based on 
spatially extensive observations could further refine harvest estimates 

on these otherwise unobserved lakes. Additional catch and harvest data 
can also be collected during spatially extensive sampling of fishing effort 
through angler intercept interviews (Iwicki et al., in prep). Perhaps most 
importantly, the different levels of variability associated with fishing 
effort and harvest estimates based on extensively collected data can 
identify lakes of greater uncertainty where additional sampling re
sources should be directed. For example, high-effort and high-variance 
lakes such as Little Arbor Vitae likely need to be allocated more sam
pling effort than lakes such as White Birch (Fig. 3). 

In addition to its applicability to data-poor fisheries, a model-based 
approach to generating fishing effort estimates from fewer observa
tions at more fishing sites could be a practical tool for managers who 
want to implement ecosystem-based management strategies that can 
respond to fast and slow changes across a fisheries landscape (sensu 
Walker et al., 2012). A transition from a one-size-fits-all management 
policy to a more diverse set of policies may contribute to a more 
persistent and resilient fisheries system (Carpenter and Brock, 2004; van 
Poorten and Camp, 2019). These policies would ideally be dynamic 
across space and time, which requires faster feedback from data 
collection describing how interventions have affected fishing effort, 
catch, and harvest. Although implementing highly dynamic and 
lake-specific policies is probably an unrealistic goal in lake-rich fish
eries, tailored management of different categories of lakes may simul
taneously improve system resilience and angler satisfaction by 
accommodating the preferences of heterogeneous groups of anglers. 
Strategic collection of fishing effort data over many lakes may therefore 
be an effective bridge between one-size-fits all policy and model-based 
implementation of diverse and dynamic policies. 
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