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A B S T R A C T

Many modern stock assessments estimate age- or length-based selectivity, often using simple parametric func-
tions describing asymptotic or dome-shaped selectivity. We present a length-based stock reduction analysis
(Length-SRA), which bypasses the requirement of estimating selectivity by calculating exploitation rate at length
directly from observed catch-at-length data. We test the performance of Length-SRA using a simulation–eva-
luation framework under three exploitation rate trajectories and under fixed and time-varying selectivity sce-
narios. We also explore the impacts of misspecification of growth parameters. The Length-SRA yields low bias in
parameter estimates and management benchmarks and is relatively accurate when tracking changes in se-
lectivity through time. We use Length-SRA to assess two species, Pacific hake and Peruvian jack mackerel,
showing that selectivity is quite variable in both species over time, leading to time-varying management re-
ference points. Length-SRA provides assessment results with accuracy comparable to other methods, such as
Virtual Population Analysis and Statistical Catch at Age Analysis, with the additional advantage of providing
estimates of selectivity over time.

1. Introduction

Modern stock assessment typically attempt to fit population dy-
namics models to catch-at-age and at-length data, in hopes of extracting
information from these data about age/size selectivity, cohort strength
and fishing mortality patterns (Hilborn and Walters, 1992; Methot and
Wetzel, 2013). Some assessment methods attempt to ignore the length
frequency data, by converting these data to age compositions using age-
from-length tables, perhaps using iterative methods to estimate pro-
portions of fish at age for each length interval (Kimura and Chikuni,
1987). In cases where age data are lacking, methods such as MULTI-
FAN-CL (Fournier et al., 1998) attempt to obtain estimates of se-
lectivity, fishing mortality and population dynamics parameters using
only size composition data. Combined with a few assumptions re-
garding the structure and variability in length-at-age, this procedure
can even be used to attempt to recover information about changes in
body growth patterns if there is a strong age-class signal in the length
composition data (Fournier et al., 1998). It is typical for results from
length-based assessment models to show substantial deviations between
predicted and observed length distribution of catches, reflecting both
sampling variation in the length composition data and incorrect as-
sumptions about the shapes and stability of growth and selectivity

patterns (Hilborn and Walters, 1992).
When dealing with length-based stock assessments, it is not un-

common to encounter conflict between data types. For example, there
may be a conflict between an index of abundance and length-compo-
sition data (Punt et al., 2013). For many length-based assessment
methods, the poor fit to the length composition data arise from the
inability of the models to track changes in fisheries selectivity over time
(Gulland and Rosenberg, 1992; Punt et al., 2013). Changes in fisheries
selectivity over time are thought to occur for many fisheries, and if not
taken into account can lead to biased assessment results. However,
many data-poor assessment methods have to rely on constant selectivity
assumptions (Gulland and Rosenberg, 1992; Rudd and Thorson, 2017).

Selectivity to fishing is the combination of two processes: vulner-
ability to the fishing gear and availability of the fished population in the
area being fished (Beverton and Holt, 1957). Both processes can vary
over time and therefore modify the resulting selectivity. Although
vulnerability process can often be directly measured using gear ex-
periments, availability is generally harder to measure as it depends on
the size-based distribution of the exploited population and the spatial
distribution of the fishing fleet. Fish movement, size-structured changes
in fish distribution, and changes in fleet distribution, can all affect
availability and consequently lead to changes in selectivity. Such

https://doi.org/10.1016/j.fishres.2018.07.010
Received 8 January 2018; Received in revised form 17 July 2018; Accepted 18 July 2018

⁎ Corresponding author at: Fisheries and Oceans Canada, 3190 Hammond Bay Road, Nanaimo, BC, Canada V9T 6N7.
E-mail addresses: Catarina.Wor@dfo-mpo.gc.ca (C. Wor), Brett.VanPoorten@gov.bc.ca (B. van Poorten), robertolicandeo@gmail.com (R. Licandeo),

c.walters@oceans.ubc.ca (C.J. Walters).

)LVKHULHV�5HVHDUFK���������������²���

�����������&URZQ�&RS\ULJKW��������3XEOLVKHG�E\�(OVHYLHU�%�9��$OO�ULJKWV�UHVHUYHG�

7



changes are not uncommon (Sampson and Scott, 2012), but are usually
difficult to track over time. This difficulty is associated with an inability
to distinguish between changes in fishing mortality and changes in
selectivity in most age- and length-based stock assessment methods. For
this reason, many assessment methods rely on ad hoc parametric se-
lectivity models that may or may not include changes over time
(Maunder et al., 2014). If misspecified, such models might lead to se-
vere bias in estimates of fishing mortality and other parameters, which
could result in misleading management advice (Martell and Stewart,
2014).

We outline an alternative approach to assessment modeling that
begins by assuming that the assessment model should exactly reproduce
the observed catch length-composition. This approach follows the dy-
namics of an age-structured stock reduction analysis (SRA) (Kimura
et al., 1984; Kimura and Tagart, 1982; Walters et al., 2006), which
follows a “conditioned on catch” format, in which the catch length-
composition is assumed to be known without error. The observed cat-
ches-at-age are then subtracted from modeled numbers at age to project
numbers at age over time. A good review of SRA-type models is pro-
vided in Thorson and Cope (2015). The assumption of known catch
composition is analogous to the classical assumption in virtual popu-
lation analysis that reconstructed numbers at age should exactly match
observed catch-at-age data (Hilborn and Walters, 1992). The suggested
approach may have two key advantages over statistical catch-at-age
and/or catch-at-length methods: (1) it does not require estimation of
age- or size-selectivity schedules, and (2) catch-at-length data are
commonly available for every year, even when age-composition sam-
pling has not been conducted.

We named this approach a Length-SRA assessment model. We pre-
sent the model formulation, demonstrate its performance using a si-
mulation–evaluation analysis and apply it to actual data from the
Peruvian jack mackerel (Trachurus murphyi) and Pacific hake
(Merluccius productus) fisheries.

2. Methods

2.1. Stock reduction analysis with catch-at-length data – length-SRA

Length-SRA proceeds through the following steps: (1) compute
numbers-at-age (based on recruitment estimates and mortality in the
previous year); (2) convert numbers-at-age into numbers-at-length
using the proportions of individuals at length given each age class; (3)
calculate the exploitation rate-at-length using numbers-at-length and
observed catch-at-length; (4) convert the exploitation rate-at-length to
exploitation rate-at-age; and (5) compute numbers in the following year
using the exploitation rate at age, natural mortality, and recruitment
estimates.

The model requires data on the length composition of catch in
numbers (used in step 3), a prior distribution for the recruitment
compensation ratio, and a survey index of abundance that is used to
tune the model parameters to the most likely stock abundance trajec-
tory. The model also requires good estimates of growth parameters,
variability around mean length-at-age, and natural mortality. The stock
assessment and simulation routines were written in ADMB (Fournier
et al., 2012) and are available on github.com/catarinawor/length_SRA.
The notation used in the stock assessment and simulation routine is
defined in Tables 1 and 2).

A crucial component of the Length-SRA is the calculation of pro-
portions of individuals at length given each age class (Pl|a – Eqs.
T3.1–T3.5). The calculation of such proportions (Eq. T3.1) relies on
four main assumptions regarding the distribution of length-at-age: (1)
mean length-at-age follows a von Bertalanffy growth curve (Eq. T3.4),
(2) length-at-age is normally distributed (Eqs. T3.1–T3.3), (3) the
standard deviation of the length-at-age is known (e.g. eq. T3.5), and (4)
Pl|a is constant for all lengths equal or greater than a maximum length L
and lower than a minimum length lo(Eq. T3.1).

The proportions of length-at-age are used to convert length-based
quantities into age-based quantities, which are used to propagate the
age-structured population dynamics forward (Table 3). We assume that
recruitment follows a Beverton-Holt type recruitment curve (Eq. T3.6),
that harvesting occurs over a short, discrete season in each time step
(year or shorter), and that natural survival rate is known and constant
over time (Eqs. T3.6–T3.10). The computation of numbers-at-age in the
initial year (i.e. first year in which data is reported, tinit) is different
from that in the remaining years (eq. T3.13). Recruitment in the initial
year is set to the unfished recruitment level Ro multiplied by random
recruitment deviates, which are used to indicate that the population
was not at equilibrium at the start of the time series.

We used equilibrium spawner-per-recruit (SPR) quantities to cal-
culate management targets. For illustration purposes we use 40% as a
SPR target and use YieldSPR=40% and USPR=40% as target management
benchmarks (Table 4 – Eqs. T4.6–T4.14). As in all SPR calculations, the

Table 1
Indexes, variable definition, and values used in simulation–evaluation.

Symbol Value Description

l {lo, …, L} Central point of length bin,
L=72 cm

a {ao, …, A} Age-class, A=20 years
t {1, …, T} Annual time step, T=50 years
ao 1 First age or age of recruitment
lbin 2 cm Size of length bin
lo 26 cm Central point of first length bin
init 21 Annual time step in which data

starts to be reported
Distribution of length

given age
L∞ 68 cm Maximum average length
K 0.3 Rate of approach to L∞
to −0.1 Theoretical time in which length of

individuals is zero
cvl 0.08 Coefficient of variation for length-

at-age curve
Pl|a Matrix of proportions of length-at-

age
Φ Standard normal distribution
zla,l Normalized z score for lower limit

length bins
zua,l Normalized z score for upper limit

length bins
bll Lower limit of length bins
bul Upper limit of length bins
La Mean length-at-age
σL Standard deviation of length-at-age
Population dynamics
Ro 100 Average unfished recruitment
κ 10 Goodyear recruitment

compensation ratio
S 0.7 Natural annual survival
σR 0.6 standard deviation for recruitment

deviations
wt ! σ(0, )R Recruitment deviations for years

{init-A-ao,…,T}
Na,t Numbers of fish at age and time
SBt Spawning biomass at time
mata Proportion of mature individuals at

age
VBt Biomass that is vulnerable to the

survey at time t
va {0,0.5,1, …,1} Survey vulnerability at age
Ua,t Exploitation rate at age and time
Ul,t Exploitation rate at length and time
Cl,t Catch at length and time
Nl,t Numbers at length and time
lxa Unfished survivorship at age
ϕe Unfished average spawning biomass

per recruit

ˆsell t,
Selectivity estimates at length and
time
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Yieldtarget and Utarget estimates depend on the selectivity curves calcu-
lated for each year (Eq. T4.9) (Table 5).

To assess how well the model tracked changes in selectivity over
time, we calculated the resulting selectivity estimates by normalizing
the yearly vectors of exploitation rate-at-length (Ul,t) by the yearly
average exploitation rate-at-length (Ul ) (Eq. T3.11), which is more
stable than the maximum yearly exploitation rate (maxUl). This

happens because observation errors tend to average out over the length
classes, diminishing variability of Ul in relation to maxUl. When cal-
culating the management targets, we used the same method to calculate
the mean selectivity at age (Eq. T4.7). However we also averaged se-
lectivity-at-age over the past two years (Eq. T4.7) to further smooth the
curves.

Length-SRA estimates two main parameters: average unexploited
recruitment R0 and the recruitment compensation ratio κ. In addition,
the annual recruitment deviations wt are estimated for all cohorts ob-
served in the model. That is, the number of recruitment deviations is
equal to the number of years in the time series plus the number of age
classes greater than recruitment age.

The objective function (Eq. T5.8) is composed of a negative log-
likelihood component, one penalty, and a prior component for the re-
cruitment compensation ratio κ. The negative log-likelihood component
minimizes the differences between the predicted and observed index of
abundance (Eq. T5.1). We assume that such differences are lognormally
distributed (Eqs. T5.3 and T5.4) and use the conditional maximum
likelihood estimator described by Walters and Ludwig (1994) to esti-
mate the survey catchability coefficient q (Eq. T5.2). A lognormal
penalty is added to the negative log-likelihood function to constrain
annual recruitment residuals so estimates have mean of zero and fixed
standard deviation σR (Maunder and Deriso, 2003) (Eq. T5.5). This
penalty was applied differently in the ADMB parameter estimation

Table 2
Indexes, variable definition for operating model, MSY quantities, and values
used in simulation–evaluation.

Symbol Value Description

Operating model
sell,t Fishing selectivity at length and time
g, d, k Vary by scenario Parameters for selectivity function
Ut Vary by scenario Annual maximum exploitation rate
It Index of abundance at time
σIt 0.2 standard deviation for index of abundance

deviates
q 1.0 Catchability coefficient
τ Multivariate logistic error term with στ=0.1

Management quantities
lza Fished survivorship at age
Fz seq(0.0, 1.0,

by= 0.001)
Hypothetical average fishing mortality to
calculate management targets

ϕz Average spawning biomass per recruit
ϕeq Average exploited biomass per recruit under

Uz

rsela,t Realized selectivity at age and time t
Req Average equilibrium recruitment under Uz

Yieldz Equilibrium yield under Uz

Yieldtarget Yield that would reduce spawner per recruit
to 40% of unfished levels

Utarget Exploitation rate that reduce spawner per
recruit to 40% of unfished levels

Table 3
population dynamics for Length-SRA and operating model.

Distribution of length given age
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Ua,t= ∑l(Pl|a ·Ul,t) (T3.7)=Ul t
Cl t
Nl t,

,
,

(T3.8)

Nl,t= ∑a(Pl|a ·Na,t) (T3.9)= ∑ w NSB (mat · · )t a a a a t, (T3.10)=sel̂l t
Ul t
Ut,

, (T3.11)= ∑ N wVB ·t
a

a t a, (T3.12)

Initial year and incidence functions
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Table 4
Management quantities and operating model.

Operating model
Na,t=1= lxa · Ro (T4.1)=U U ·sell t t l t, ,

OM (T4.2)
Cl,t=Nl,t ·Ul,t · Pl|a · τ (T4.3)= − − −+ −( )sel · ·l t g

g
g

g ed g k l

ed k l,
1

1
1 · ·( )

1 ·( ) (T4.4)

!=I q e·VB · ( ( ) )t t σ It0, (T4.5)

Management quantities

= ⎧
⎨⎪⎩⎪

= =− < <=− −− − −− −
a a

S F a a A

a A
lz

lz 1
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a S Fz a t
S Fz A t

1 1,
lz 1· ·exp( ·rsel 1, )
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(T4.6)

= −− +
rsela t

Ua t
Ut

Ua t
Ut

,

, 1
1

,

2 (T4.7)= ∑ϕ wlz ·mat ·z a a a a (T4.8)= −Target | 0.4|ϕ
ϕz
ϕe

(T4.9)= ∑ − −ϕ F wlz ·(1 exp( *rsel ))·a a z a t aeq , (T4.10)

= − −R R ·o
κ ϕe ϕz

κeq
/
1 (T4.11)

Yieldz= Req · ϕeq (T4.12)
Yieldtarget= Yieldz associated with min(Targetϕ) (T4.13)
Utarget=1− exp(−Fz) associated with min(Targetϕ) (T4.14)

Table 5
Likelihood functions and penalties.

Conditional Likelihood
Zt= log(It)− log(VBt) (T5.1)=q eZ (T5.2)= −Z ZZstatt t (T5.3)

!∼ = =µ σ σLL (Zstat| 0, )It1 (T5.4)

Penalties
!

!∼ ⎧⎨⎩ = = <= = =P w µ σ σ
w µ σ σ
( | 0, ) phase last phase

( | 0, ·2) phase last phasewt
t R

t R
(T5.5)

Priors
!∼ =κ σprior(log( )) (log(10), 0.5) (T5.6)
!∼ =q σprior(log( )) (log(1.0) 0.5) (T5.7)

Objective function
Obj=− log(LL1)+ (−log(Pwt))+ prior(log(κ))+ prior(log(q)) (T5.8)
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phases. The value for the standard deviation for recruitment deviations
(σR) was set to the input value for most estimation phases. However in
the last estimation phase, the value for σR was multiplied by 2. This
procedure was based on the findings of Schnute and Kronlund (2002)
that maximum likelihood variance estimations tends to be lower than
real variances. We found that multiplying σR by a factor of 2 yielded the
most precise and unbiased results in our simulations. Lastly, an in-
formative normal prior for log(κ) was included in the objective function
(Eq. T5.6). In earlier versions of the model (results not shown), we
found that it was difficult for Length-SRA to determine the difference
between a large stock with low productivity and a small stock with high
productivity. The inclusion of an informative prior on the κ helps to
solve this problem.

2.2. Simulation–evaluation

Model performance was evaluated using a simulation–evaluation
based on the biological parameters of a hypothetical fish species. We
used the same model structure described in Table 3 for both the si-
mulation and estimation models. However, the operating model was
modified to control annual exploitation rate (Eq. T4.2), time-varying
selectivity (Eq. T4.4), and observation and process errors.

The simulation model was initialized at unfished conditions (eq.
T4.1) but only started reporting data for the simulation–evaluation
procedure in year tinit. Selectivity in the operating model was computed
with the three parameter selectivity function described by Thompson
(1994) (Eq. T4.4). We chose to use this three parameter selectivity
curve because of its flexibility, which allowed us to switch between
logistic and dome-shaped curves in the scenarios in which time-varying
selectivity was considered. The observation error in the operating
model included lognormal error in the index of abundance and logistic
multivariate error (Schnute and Richards, 1995) in the catch numbers-
at-length. Recruitment deviations were assumed to be lognormally
distributed with constant σR (Table 1).

We considered six scenarios in the simulation–evaluation trials,
including two selectivity patterns (constant- “C”, and time-varying –
“V”) and three historical exploitation rate trajectories (contrast “C”,
one-way trip – “O”, and U-ramp – “R”). We use a two-letter acronym to
designate the scenarios: CC, CO, CR, VC, VO, and VR. In the constant
selectivity scenario, selectivity was assumed to follow a sigmoid shape.
In the time-varying selectivity scenario, the selectivity curve was as-
sumed to vary every year, progressively changing from a dome shaped
curve to sigmoid and back to dome shaped. In the contrast scenarios the
exploitation rate (Ut) starts low and increases beyond Utarget and then
decreases until Ut≈Utarget. In the one-way trip scenarios U increased
through time until U≈ 2 ·Utarget. In the U-ramp scenario, Ut increases
steadily until Ut≈Utarget and remains constant thereafter. Figures
showing the Ut and selectivity trajectories are included in the online
supplementary materials.

All simulations had 30 years of data and 200 simulation trials were
performed for each scenario. We evaluated the distribution of the re-
lative proportional error ( −esimated simulated

simulated
) for the main parameter esti-

mates (Ro, and κ) and for four derived quantities (Depletion: SB
SB

T
0
,

Yieldtarget, Utarget, and q). Depletion, Yieldtarget and Utarget were evaluated
for the last year of data only. Additional simulation scenarios, including
variability in error levels, misspecification and removal of priors, as
well as an additional life history example, are given in the supple-
mentary materials.

2.3. Misspecification of growth parameters – L∞

One important feature of the Length-SRA is that it assumes that
growth follows a von Bertalanffy curve and that the growth parameters
are known and constant over time. If this assumption is violated, the
model outcomes will be impacted as the model will try to explain the

deviations from the true growth curve with changes in the selectivity
pattern. Here we illustrate how the outcomes are impacted by the
misspecification of L∞. For the simulations, L∞ parameter was assumed
to be 68 cm. We provided the estimation model with the true value,
with 10% overestimation (74.8), and 10% underestimation (61.2). We
assumed a simple logistic selectivity curve for this exercise.

2.4. Actual data examples

Two case studies were chosen to illustrate the application of the
Length-SRA to actual datasets: Pacific hake and Peruvian jack mackerel.
Both species are believed to be subject to time-varying selectivity.

The Pacific hake fishery is believed to exhibit time-varying se-
lectivity due to cohort targeting and annual changes fleet spatial dis-
tribution (Ruttan, 2003). The population is known to have spasmodic
recruitment, with high recruitment events occurring once or twice
every decade (Ressler et al., 2007). Pacific hake tends to segregate by
size during their annual migration (Ressler et al., 2007), allowing the
fishing fleet to target strong cohorts by changing the spatial distribution
of fishing effort as the cohort ages. Hake catch-at-length data were
available for the period between 1975 and 2013. The survey index of
abundance was available intermittently from 1995 to 2013.

The movement pattern of jack mackerel is not as well known, al-
though fish appear to move between spawning and feeding areas
(Gerlotto et al., 2012). Variability in selectivity patterns for the jack
mackerel fishery are believed to be associated both with evolution of
fleet capacity and gear utilization and with compression and expansion
of the species range associated with abundance changes (Gerlotto et al.,
2012). Jack mackerel catch at length data was available from 1980 to
2013 and the survey index was available between 1986 and 2013, with
the exception of 2010.

We had to make a few assumptions about the population growth
parameters and recruitment variability to apply Length-SRA method to
these data. For both stocks, stock assessment reports were available. We
assumed that the von Bertalanffy parameters were equal to those re-
ported in the assessment documents. We also had to make assumptions
regarding the standard deviation of recruitment estimates σR. We as-
sumed σR = 1.4 for Pacific hake (Taylor et al., 2014). Estimates of σR
were not directly reported in the jack mackerel assessment, so we as-
sumed a value of 0.9. We recommend that sensitivity analyses, as-
suming different values of σR, are performed whenever using the
Length-SRA for management purposes. Similar assumptions were made
for the assumed variability around the survey observations. We as-
sumed σIt=0.1 for Pacific hake and σIt=0.4 for jack mackerel. We also
recommend sensitivity analysis over these parameter values, particu-
larly if the survey estimates are believed to be uncertain.

3. Results

3.1. Simulation–evaluation

We evaluated the performance of the Length-SRA in relation to the
main parameters and derived management quantities with boxplots of
the relative proportional error. Relative proportional error was calcu-
lated based on the maximum likelihood estimates of each parameter for
each of the 200 simulated populations for each scenario. Throughout
we use the terms positive and negative median bias to indicate that the
median relative proportional error is above or below zero. The median
relative proportional error sign indicates if a parameter has been un-
derestimated or overestimated the majority of the time.

The simulation–evaluation of Length-SRA showed that Ro estimates
showed a small positive median bias for the CC, CO and VO scenarios
whereas negative median bias was seen for the CR, VC and VR sce-
narios. The estimates of κ were either unbised or showed a very small
positive median bias. The relative error distribution for κ indicate that
the parameter estimates were very precise, likely an effect of the
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informative prior considered for that parameter, as well as the like-
lihood function which lets σR be higher in the last phase of the esti-
mation (Eq. T5.5) (Fig. 1).

The depletion (SBt/SBo) estimates resulted in negative median re-
lative error for all scenarios (Fig. 1). The Yieldtarget relative error dis-
tribution was relatively unbiased (median relative error< 9%), with
positive median bias occurring for the one-way trip scenarios (CO and
VO) and also the CC scenario (Fig. 1). The Utarget relative error estimates
showed positive median bias across all scenarios, with high median bias
observed for the CR and VR scenarios. The estimates of q showed po-
sitive median bias across all scenarios (Fig. 1).

The simulation–evaluation exercise showed that Length-SRA is able
to track the median estimates of selectivity changes through time
(Fig. 2). However the selectivity estimates are quite variable, especially
for young ages, which is likely due to the observation error in the catch
at length composition and to the difficulties in distinguishing strong
recruitment events from variability in selectivity.

3.2. Misspecification of growth parameters

Misspecification of L∞ has severe implications in the capability of
Length-SRA to estimate exploitation rate at length, and consequently,
selectivity (Fig. 3). The estimates of selectivity were lower than true for
young ages and higher than true for older ages if the value of L∞ was
specified to be lower than the true value. In the scenario where L∞ was
set to be higher than the true value, selectivity was estimated to follow
a dome shaped pattern. These patterns occur because the model is
trying to adjust the mismatch between proportions of catch-at-length
and the Pl|a matrix by changing the predicted selectivity pattern. As a
result, failure to adequately specify L∞ leads to erroneous estimation of

selectivity patterns and, consequently, failure in estimating manage-
ment quantities.

3.3. Actual data examples

The model fit the Pacific hake and jack mackerel indexes of abun-
dance relatively well (Fig. 4). The Pacific hake index of abundance time
series is relatively short and intermittent (survey takes place every two
or three years). The index of abundance time series for jack mackerel
was longer but it indicates a downward trend in abundance with low
contrast in the last ten years of data.

The parameter estimates for the Pacific hake example differ sig-
nificantly from those in the assessment model. The Ro estimate obtained
with Length-SRA was higher, 2.96 billion vs. 2.35 in the Taylor et al.
(2014) assessment. The estimate for κ was lower than tha obtained in
the assessment, κ=17.44 from Length-SRA and 25.2 in the Taylor et al.
(2014) assessment. For the jack mackerel example, Length-SRA esti-
mated Ro=3208.29 millions and κ=15.54. Direct comparisons with
the assessment results are not possible because the parameter estimates
for the Peruvian jack mackerel stock in isolation are not directly re-
ported in the assessment document (Anonymous, 2013).

The model fit for both species resulted in time-varying selectivities
that lead to variation in Yieldtarget and consequent changes in Utarget

(Fig. 4). This is because changes in selectivity result in changes to the
vulnerable biomass even if total biomass is constant. A sharp peak in
both Yieldtarget and Utarget is shown for both Pacific hake and jack
mackerel. We believe these peaks are likely unrealistic and are asso-
ciated with difficulties in estimating recruitment deviations in the early
years.

The selectivity curves estimated for Pacific hake and jack mackerel
are quite variable and mostly estimated to be dome shaped (Fig. 5). The
selectivity estimates for Pacific hake are not directly comparable to
those given in the 2014 assessment (the year corresponding to the last
year of data that we have available; Taylor et al., 2014). Although,
several time-varying selectivity scenarios were considered in that as-
sessment document, selectivity at age was generally assumed to be
constant after age 6. However, it is possible to see similarities between
the overall patterns in selectivity, particularly, a shift towards younger
ages in the years of 2010 and 2011 (see Fig. 30 in Taylor et al., 2014).
For the jack mackerel example, the selectivity estimates closely match
those shown in the 2013 jack mackerel assessment document for the far
north fleet, which corresponds to the Peruvian stock used in this ex-
ample (see Fig. A5.16 in Anonymous, 2013).

The observed variability in selectivity estimates in these examples
might indicate real changes in selectivity (e.g. cohort targeting) or
might also be caused by misspecification of the growth parameters (see
Fig. 3). The growth parameters we used in Length-SRAs were taken
from the stock assessment reports. For Pacific hake, however, such es-
timates are not used in the assessment model as the growth information
is overwritten by the empirical weight-at-age data available for that
species (Taylor et al., 2014). At this point it impossible to determine the
causes for the resulting patterns in selectivity observed with Length-
SRA. Further investigation would be needed if this model is to be used
for management purposes.

4. Discussion

We present a length-based stock reduction analysis (Length-SRA)
that allows monitoring of time-varying selectivity. Catch-at-length is
assumed to be known without error in Length-SRA and exploitation
rate-at-length is calculated directly from estimates of numbers-at-
length. In turn, numbers-at-length are produced based on numbers-at-
age and on probabilities derived from growth curve parameters and the
assumed variability (standard deviation) around mean length-at-age.
This is important because it allows the model to bypass the requirement
for the estimation of a selectivity curve, as is required in more

Fig. 1. Relative proportional error for main parameters and derived quantities
for all scenarios considered in the simulation–evaluation. Depletion, Yieldtarget
and Utarget) were evaluated for the last year of data. Boxplots center lines in-
dicate the median estimate. Lower and upper hinges indicate first and third
quartiles. Upper and lower whiskers are given by the maximum and minimum
values within the intervals given by the hinge value±1.5· inter-quartile range
(distance between the first and third quartiles). CC – constant selectivity and
contrast exploitation rate, CO – constant selectivity and one-way trip ex-
ploitation rate, CR – constant selectivity and U-ramp exploitation rate, VC-
varying selectivity and contrast exploitation rate, VO – varying selectivity and
one-way trip exploitation rate, and VR – varying selectivity and U-ramp ex-
ploitation rate.
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traditional age- and length-based models (e.g. Mesnil and Shepherd,
1990; Sullivan et al., 1990) and in more recent length-based state-space
modelling approaches (White et al., 2016). Estimation of selectivity
ogives can be very difficult, especially if selectivity is believed to vary
over time unpredictably (Linton and Bence, 2011; Martell and Stewart,
2014).

Nielsen and Berg (2014) present a stock assessment approach that
accounts for time varying selectivity by treating fishing mortality-at-age
as process error estimated within a state-space approach and allowing
autocorrelation over ages and time. The accuracy in the estimates of
selectivity obtained with Length-SRA are comparable with those pre-
sented by Nielsen and Berg (2014), especially for the one-way trip
scenarios. However, selectivity estimates from Length-SRA are less
precise than those shown by Nielsen and Berg (2014). The high ob-
served variability in selectivity estimates in Length-SRA is probably
associated with the assumption of perfect knowledge of the catch-at-
length (i.e. no observation error). Nielsen and Berg (2014) explicitly
model the observation error in catch-at-age by adding a normally-dis-
tributed error term to the catch function. This error is assumed to be
zero in Length-SRA. This assumption leads to selectivity estimates that
aggregate both the true selectivity effects and the observation error in
catch-at-length.

Other recent examples of stock assessment methods that rely on
catch-at-length data include Rudd and Thorson (2017) and Hordyk
et al. (2015). Rudd and Thorson (2017) presents a length- based stock
assessment model, LIME that can account for time-varying recruitment
and fishing mortality. LIME, however does not allow for time-varying

selectivity. Instead, it assumes that selectivity is constant through time
and follows a logistic function. While LIME and the Length-SRA esti-
mates have comparable levels of precision, LIME produces generally
more accurate estimates of relative spawner potential ratio. The higher
accuracy in LIME is probably associated with the fact that the recruit-
ment deviations in that model are estimated as random effects. This
approach drastically reduces the number of estimable parameters, in-
creasing the degrees of freedom and allowing for better performance of
the overall model. A future extension of Length-SRA would likely
benefit from adopting a similar approach.Hordyk et al. (2015) presents
an equilibrium-based model, the LB-SPR, that provides SPR and F/M
estimates. LB-SPR produces relatively unbiased estimates of SPR, and
has comparable performance to the non-equilibrium method described
by Rudd and Thorson (2017), at least for medium and long lived spe-
cies. In theory, LB-SPR could be applied to each year of data separately
to account to changes in selectivity. However, it is important to note
that the LB-SPR relies on a parametric assumption regarding the se-
lectivity ogive. Hordyk et al. (2015) show that the results from LB-SPR
are quite sensitive to misspecification of the selectivity function.

An important advancement of Length-SRA over conventional stock-
assessment models is the indirect calculation of time-varying se-
lectivity. This information alone can be used to characterize the com-
plexity of the fishery system. Length-SRA on its own is reasonably ac-
curate in deriving important management-oriented parameters
(depletion and Yieldtarget). However another option may be to combine
findings from this model with another assessment model, such as a
statistical catch-at-age (SCA) model. In this framework, Length-SRA can

Fig. 2. Simulated and realized selectivity at age estimates for a set of years within simulation–evaluation time series. The estimated solid lines indicate median, 2.5%
and 97.5% quantiles for the derived selectivities.
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be used to calculate annual selectivity patterns and provide an indica-
tion of possible changes over time. These selectivity estimates can then
become an input into an SCA to calculate other important variables and
produce management advice. This combination of models has been
used in the past (Walters and Punt, 1994); we suggest Length-SRA may
be a useful tool in this context.

Accurate estimates of selectivity are particularly important if fishery
management is based on yield-per-recruit reference points. Yield-per-
recruit depends on the selectivity curve (Beverton and Holt, 1957) and
for this reason, changes in selectivity over time will directly affect re-
ference points (Beverton and Holt, 1957; Hilborn and Walters, 1992).
We observed selectivity changes for both Pacific hake and jack

Fig. 3. Simulated and realized selectivity at age when L∞ is misspecified. Results shown for the last four years of simulation–evaluation time series. Boxplots center
lines indicate the median estimate. Lower and upper hinges indicate first and third quartiles. Upper and lower whiskers are given by the maximum and minimum
values within the intervals given by the hinge value± 1.5· inter-quartile range (distance between the first and third quartiles).

Fig. 4. Fit to index of abundance, historical catches, and Yieldtarget and Utarget estimates for Pacific hake and jack mackerel. Observed indexes of abundance are shown
in open circles, closed dots in Yieldtarget and Utarget panels indicate model estimates.
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mackerel and show how this variability can lead to a difference be-
tween the maximum and minimum estimates of Yieldtarget and Utarget

calculated along the time series. We believe that tracking these changes
is important not only to ensure appropriate management re-
commendations, but also to illustrate the relationship between se-
lectivity patterns and management targets (Vasilakopoulos et al.,
2016).

One potential point of concern that should be considered when
using Length-SRA is that it assumes that the biological parameters used
in the growth curve and catch-at-age relationship are known without
error and constant over time. We have tested Length-SRA under mis-
specification of L∞ and observed additional bias in the estimates of
parameter and management quantities as well as strong distortions in
the resulting selectivity parameters. Similarly, Minte-Vera et al. (2017)
showed that misspecification in biological parameters, especially in
asymptotic length, can have a significant impact in assessment results.
Other length models, e.g. MULTIFAN-CL (Fournier et al., 1998), over-
come the assumption of known growth parameters by estimating the
von Bertalanffy parameters along with the other parameters. The esti-
mation of the growth parameters is made possible by assuming that
selectivity follows a parametric function (usually logistic). Once a
simple selectivity curve is assumed, all deviations in observed catch-at-
length are explained by adjusting the growth parameters. However, this
assumption can lead to bias in parameter estimates, as other studies
show that variability in selectivity and non-asymptotic patterns are
common (Waterhouse et al., 2014). In reality, in most cases it is difficult
to know if patterns observed in catch-at-length are caused by fisheries
targeting (i.e. selectivity) or if they would be more appropriately

explained by adjusting the growth parameters. Therefore, we re-
commend that, when using Length-SRA, the user should perform ex-
tensive sensitivity analyses over the possible range of values for the
growth parameters using, for example, the predictive distributions
given by the FishLife package (Thorson et al., 2017). Sensitivity ana-
lyses are particularly important if the predicted selectivity patterns are
highly variable.

The model and simulation exercise presented here assume that the
growth parameters are known and constant through time.
Consequently, time variation in growth patterns could also impact the
results produced by Length-SRA. We would not recommend attempting
to estimate time-varying growth parameters within Length-SRA be-
cause growth and exploitation rates at length are confounded.
However, if estimates of time-varying growth are available, preferably
from fishery independent data, those could be used as an input to
Length-SRA.

The approach used in Length-SRA is analogous to that used in vir-
tual population analysis in that the length-composition data are as-
sumed to be known without error. For this reason, the selectivity esti-
mates include extra variability due to observation and sampling error.
We attempted to minimize this effect by smoothing the predicted se-
lectivity over two years. However this method is not capable of com-
pletely removing the observation error effect from the selectivity esti-
mates. Because of the assumption of known catch-at-length, it is
important that the catch sampling is representative of the total re-
movals from the population (Pope, 1972). Collecting length-composi-
tion information on commercial catch can be very challenging, and the
resulting length-composition data can be subject to high variability.
Gulland and Rosenberg (1992) cover many examples of how difficulties
may arise when sampling length of the catch and provide some advice
on how to initiate and design length-composition sampling programs.
As in any other fisheries model, biased sampling and/or low sampling
effort will result in bias in parameter and fishery reference point esti-
mates (Bunch et al., 2013; Coggins and Quinn, 1998).

Some management parameters are consistently overestimated
(Yieldtarget) and underestimated (depletion) which may be cause for
concern. However, it is important to note that both parameters have
low absolute median relative error (< 17%). The magnitude of the bias
in the estimates of Yieldtarget and Utarget observed in this study are
comparable (in magnitude) to the results obtained by Martell and
Stewart (2014) for MSY and FMSY in a simulation study on the impacts
of time-varying selectivity on the estimates generated by a statistical
catch-at-age model. Other studies show even higher biases in face of
time-varying selectivity (e.g. Henríquez et al., 2016; Linton and Bence,
2011). The estimates of depletion are also comparable to those pro-
duced with other SRA-type assessments evaluated by Thorson and Cope
(2015). Overall, parameter and derived parameters estimates are gen-
erally within the range of many other stock assessment models. As
mentioned before, these biases might be reduced by considering a
mixed effects approach, with recruitment deviations being considered
as random effects, similarly to Rudd and Thorson (2017).

The Length-SRA approach can be a useful tool for fisheries stock
assessment. We believe that this is particularly true when time-varying
selectivity is thought to occur, especially if the variability is not easily
predictable from historical changes in gear use/fleet composition.
However, to acknowledge that the selectivity estimates will only be
reliable if the growth parameters for the population being assessed are
known. In addition, the simple nature of Length-SRA makes it a good
candidate model for inclusion on closed-loop simulation studies.
Further testing of this model in a closed-loop simulation set up would
provide more insight on the model performance on achieving man-
agement outcomes (Punt et al., 2016). We foresee the application of this
model as an investigative tool to evaluate potential time-varying se-
lectivity patterns, as a stock assessment tool and as part of closed loop
simulation studies.

Fig. 5. Estimated selectivity patterns across years for Pacific hake and jack
mackerel.
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