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A B S T R A C T

This paper introduces traffic counters paired with infrequent observations of total fishing effort and relative
fishing and non-fishing traffic to estimate daily and seasonal fishing effort. Fishing effort is an important metric
in recreational fisheries, used as an index of fishing attractiveness and fishing mortality. There are several
options for monitoring fishing effort, but for high-precision effort on a particular fishery, creel surveys and time-
lapse cameras have been the only options. However, time-lapse cameras have high costs associated with re-
viewing images and technology failure requires imputing missing observations. To translate this index of counts
of boats or shore anglers derived from time-lapse images into absolute fishing effort, this method requires in-
dependent measures of total fishing effort as well as observations of fishing and non-fishing traffic. We use
remote traffic counters coupled with periodic on-site creel surveys to estimate daily and seasonal fishing effort.
Fishing effort is estimated using a state-space Bayesian hierarchical model, which incorporates all of these data
to provide a measure of daily or seasonal fishing effort. We further show that for our case study, fishing effort
estimates require a high number of independent observations of effort and proportional distribution of fishing
and non-fishing traffic. Comparing effort estimates from traffic counters with estimates derived from just a
stratified random creel survey shows traffic counters provide more precise estimates of effort, though an absolute
comparison is not possible with the data available. Our mixed-use lake necessitates a high number of in-
dependent observations of traffic and angling to produce reliable fishing effort estimates; we recommend traffic
counters for lakes where most traffic is devoted to angling. We conclude traffic counters are a useful tool for
estimating fishing effort, but should be used concurrently with other methods such as creel surveys or motion-
detecting cameras that can estimate fishing and non-fishing traffic.

1. Introduction

Monitoring fishing effort is an important task in recreational fish-
eries management, since it can be a measure of attractiveness of the
fishery and is correlated with fishing mortality (van Poorten et al.,
2015). However, catch and effort reporting is not mandatory at most
water bodies in North America and monitoring every fishery is im-
practical given their dispersed nature (Cooke et al., 2016; Lorenzen
et al., 2016). Therefore decisions must be made about where to monitor
fishing effort and with what frequency. It is therefore important to have
a range of monitoring options available that allow you to achieve
precision at the appropriate spatial scale needed to address a given
management question.

Several methods currently exist for monitoring and measuring
fishing effort on individual fisheries or across landscapes (Malvestuto,
1996; McCluskey and Lewison, 2008). Creel surveys (where individual

anglers are intercepted on-site and interviewed) are an important part
of effort estimation in their own right or can be used to validate data
captured by cameras and other methods, though they are subject to
their own set of biases (van Poorten et al., 2015). However, full creel
surveys are expensive and labor intensive; surveying times are often
subsampled and stratified to reduce costs, increasing variance in esti-
mates. Even with fewer observations, creel surveys may be impractical
for many situations, especially small, remote fisheries where effort at an
individual lake is less important than effort distributed across a broader
landscape. Off-site surveys through internet, telephone, or mail have a
broad reach and are relatively inexpensive, but are prone to a variety of
biases and additional follow-up surveys to correct biases add to the cost
of the survey (Barrett et al., 2017). Aerial surveys using periodic flights
over fishing sites are another method commonly used to estimate
fishing effort and this method is useful for capturing a number of fishing
locations simultaneously in the same flight (Malvestuto, 1996).
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However, because each flight is expensive, the number of flights per
year is limited and precision of effort estimates may be poor (Parkinson
et al., 1988). Cameras are increasingly being used to monitor effort at
particular sites (Parnell et al., 2010; Smallwood et al., 2012; Patterson
and Sullivan, 2013; Ward et al., 2013; Hartill et al., 2016), which can be
cost effective, but these methods still have high data collection and
entry costs due to the time necessary to manually count anglers from
thousands of images per lake (Greenberg and Godin, 2015).

Several jurisdictions have investigated using traffic counters on
access roads and boat ramps as an index of recreational use (Hunt and
Hosegood, 2008; Hunt et al., 2008; Fay et al., 2010; Hunt and Dyck,
2011), but few have used them to estimate fishing effort (Steffe et al.,
2008). Traffic counters are low cost, low maintenance, easily hidden or
buried to protect against theft, and can be customized to capture most
vehicles entering and exiting a recreation area. They also internally
record all traffic data, removing the need for later data entry. However,
their use presupposes traffic to waterbodies is confined to a limited
number of access routes. The largest drawback of traffic counters are
their inability to distinguish between fishing and non-fishing vehicles
and not accounting for variation in trip length. To date, traffic counters
have not been a reliable tool for estimation of total fishing effort.

We present a state-space model using traffic counters to estimate
seasonal fishing effort. Unlike Steffe et al. (2008), we present traffic
counters as a primary means of estimating effort, rather than as sup-
plemental information for a full creel survey. In our model, total hourly
traffic patterns (arrivals and departures) are assumed to be normally
distributed, as in the popular salmon escapement likelihood model
(Hilborn et al., 1999). Predicted hourly traffic is fit to traffic counter
data, supplemented with independent data on trip length, and hourly
summaries of fishing and non-fishing boats, and non-boater traffic. The
model is also fit to these supplemental data to separate anglers from
non-angling traffic. We evaluate the model using a high-traffic lake
with many anglers, non-angling boaters, and non-boaters, and evaluate
various hypotheses of how fishing effort varies throughout the season.

2. Methods

2.1. Study site

Kawkawa Lake is a 72 ha coastal montane lake less than 90min
from Vancouver, British Columbia (BC). The lake is used by anglers
fishing for wild kokanee salmon (Oncorhynchus nerka), coho salmon (O.
kisutch), rainbow trout (O. mykiss) and cutthroat trout (O. clarkii), and
by non-angling boaters throughout most of the year (the fishery is
closed December to February due to occasional thin ice cover). Kokanee
are the main focus of the fishery, primarily because they grow to un-
characteristically large sizes (asymptotic length>400mm). Fishing
regulations limit kokanee harvest to four per day. The large body size of
kokanee in this population, combined with the relatively close proxi-
mity to a large metropolitan area (Metro Vancouver) may cause stress
on the fish population due to high fishing pressure and harvest. It is
important to accurately monitor fishing pressure on the lake to ap-
propriately regulate the fishery.

Kawkawa Lake is surrounded on two sides by residential develop-
ment, including many privately owned docks, though the majority of
boating activity originates from a single public boat launch. The launch
is located in a regional park with other recreational opportunities (e.g.
swimming, picnicking). The launch is accessed by a short road leading
to a parking area away from the lake; there is no parking permitted near
the launch, nor is there any place to moor a boat overnight. Therefore,
all boats must be launched and retrieved the same day.

Two TrafX G3 traffic counters were installed along the short road
accessing the boat ramp; one at either end. The traffic counter at the top
of the road was buried just alongside of the road, the other at the
bottom of the road in the base of a tree alongside the road near the
turnaround at the ramp. Both counters were buried less than 10 cm

deep. Both were set to detect car-sized or larger objects 24 h a day. Data
were downloaded approximately monthly during the study period be-
tween May and December, 2016.

A creel survey was conducted throughout the 2016 fishing season to
assess angler activity, demography and catch statistics. The survey was
stratified by day-type (weekday, weekend/holiday) and time-period
(morning, afternoon), with creel generally occurring four times per
week. A total of 91 days were surveyed for approximately 7 h per day.
The creel survey permitted the collection of ancillary data necessary for
estimating total seasonal fishing effort on Kawkawa Lake. These data
included hourly counts of the total number of boats fishing and not
fishing on the lake, as well as hourly summaries of the number of ve-
hicles coming to the boat launch with and without a boat. Since ko-
kanee and coho are the primary fished species on the lake and are ex-
clusively pelagic, virtually all anglers on Kawkawa Lake require a boat.

2.2. Model description

The total number of vehicles (Vt) passing the traffic counters each
day t must have an angling boat (Ft), have a non-angling boat (Bt) or be
a non-boater (NBt):

Ft= Vtpf, (1)

= −B V p p(1 ) ,t t f b (2)

= − −NB V p p(1 )(1 ),t t f b (3)

where pf is the proportion of all traffic that are fishing and pb is the
proportion of non-fishing vehicles that have boats. Cumulative arrivals
on day-t to hour-h for anglers (A(F),h), non-angling boaters (A(B),h) and
non-boaters (A(NB),h) are assumed to follow a cumulative normal dis-
tribution:
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where μ F t( ) and τ F t( ) is mean and precision in arrival timing for anglers
on day-t; the same nomenclature was used for non-angling boaters and
non-boaters. Similarly, cumulative departures for anglers and non-an-
gling boaters are given by
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Note that non-boaters are assumed to leave immediately (within the
same hour of arrival) because there is no area for parking. The differ-
ence in arrivals and departures is simply the mean time spent fishing by
anglers (LF) and boating by non-anglers (LB). In our application, LF is
freely estimated, while LB is assumed fixed at 2 h. Early simulations
where LB was freely estimated resulted in a precise posterior estimate
close to two hours, but resulted in high autocorrelation and longer
burn-in. We therefore chose to fix LB to improve model convergence.
The total number of anglers and non-angling boaters present on the lake
at day-t and hour-h is given respectively by

= −N A D eˆ ( ) ,F t h F t h F t h
ω

( ) , ( ) , ( ) , t (9)

= −N A D eˆ ( ) ,B t h B t h B t h
ω

( ) , ( ) , ( ) , t (10)

where ωt is a normally distributed random process error with precision
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τAc. Observations of angling and non-angling boaters counted over
discrete hours were fit to Eqs. (9) and (10) assuming Poisson observa-
tion error.

The traffic to the lake each hour with (Î B t h( ) , ) and without (Î NB t h( ) , ) a
boat is predicted as the sum of arrivals and departures occurring each
hour:
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where ψt is a normally distributed random process error with precision
τCc. Observations of numbers of vehicles with and without boats ar-
riving at the launch at discrete hours and days were fit to Eqs. (11) and
(12) assuming Poisson observation error.

Finally, the number of observations recorded by each traffic counter
(j) is predicted as the number of trips to the boat ramp (arrivals and
departures) of all visitor types multiplied by the number of times a
vehicle will pass by a traffic counter on a trip to the boat launch, nc. At
the Kawkawa Lake launch, nc is fixed at 2 accounting for no parking at
the launch, so vehicles must pass the traffic counters once on their way
to launch and again when leaving the launch to park their vehicle:

= +C n I I eˆ (ˆ ˆ ) ,j t h c B t h NB t h
χ

, , ( ) , ( ) , t (13)

where χt is a normally distributed random process error with precision
τTc. Hourly observations by each of the two traffic counters were fit to
Eq. (13) assuming Poisson observation error.

The creel survey gathered a variety of information including trip
length for anglers. Mean trip length in the model was estimated by
fitting to these data assuming they are lognormally distributed with
mean ln(LF) and precision of 100.

We assume parameters of the model associated with arrival timing
for anglers, boaters and non-boaters are exchangeable across days. Prior
probability distributions for these parameters share common hyper-
priors defined by estimated hyper-parameters (Gelman and Hill, 2007).
Therefore, days with more data (e.g. independent vehicle and boat
counts) help inform hyper-parameters, which in turn inform prior
probability distributions for days with less data. Hyper-prior and prior
distributions for all estimated parameters are shown in Table 1.

It is uncertain how the proportion of vehicles that fish (pf) and the
proportion of non-fishers with a boat (pb) may change through the year.
Four hypotheses were tested to evaluate sensitivity of the model fits and
overall estimates of seasonal fishing effort. The simplest hypothesis
(Model 1) is that both pf and pb vary randomly throughout the fishing
season as beta-distributed random effects. Each is predicted daily as

=p B α β( , )f t f f, (14)

and

=p B α β( , )b t b b, (15)

The shape parameters in Eqs. (14) and (15) are assumed to be ex-
changeable across days and share common hyper-priors that themselves
are transformed from the mean and precision of pf and pb across days.
For example:

=α μ τb α αb b (16)

and

= −β τ α ,b α bb (17)

where μαb and μαb are the mean and precision of daily pb over the
season.

The second hypothesis (Model 2) assumes the proportion of visitors
fishing each day varies as a function of weekday/weekend and weather.
We assume the proportion of visitors fishing is a logit-transformed
linear function:

= + + + +p δ δ D δ T δ P δ T Plogit( ) ,f t F t F
D

t F
T

t F
P

t F
TP

t t, ( ),
0

( ) ( ) ( ) ( ) (18)

where Dt is a dummy variable indicating weekday (=0) or weekend/
holiday (=1), Tt is air temperature (°C), Pt is precipitation (mm) and δx
are estimated coefficients. As in Eqs. (14) and (15), δ F t( ),

0 was assumed to
vary randomly by day as a logit transformed normally distributed
random variable with hyper-mean and hyper-precision described in
Table 1. Under this assumption the proportion of non-fishers with a
boat are assumed to vary randomly (e.g. Eq. (15)). Weather data were
downloaded from Environment Canada (http://climate.weather.gc.ca/
historical_data/search_historic_data_e.html). Weather data were nor-
malized to vary around 0 to aid in model convergence.

The third hypothesis (Model 3) is to assume day of week and
weather impact pb using the same structure as Eq. (18) and pf varies
randomly as Eq. (14). The fourth hypothesis (Model 4) is to assume
both pb and pf are influenced by day of week and weather.

Model selection for characterizing how pf and pb vary over days was
evaluated in two ways. The first was by calculating the Deviance
Information Criterion (DIC; Spiegelhalter et al., 2002), which balances
posterior model fit against the efferctive number of parameters (pD) and
is the preferred method for evaluating parsimony in hierarchical
models. The second was to compare predictive performance of each
model using k-fold cross validation (James et al., 2013). Days where
independent observation data were collected were randomly separated
(folded) into five sets of approximately equal number of days. Ob-
servations on those days form k data sets. Parameters were estimated k
times, where each time, four of the folds were treated as a training
dataset. The mean squared error (MSEi) was calculated between held-
out observations and the corresponding validation data. Posterior es-
timates of cross validation (CV) are calculated as the mean posterior
MSE across all k folds (James et al., 2013).

The dataset is rich with independent observations (traffic and boat
counts), and so we evaluated model sensitivity of the selected model to
available independent data. This was conducted by randomly selecting
20, 40, 60 and 80% of independent observations to be excluded,
grouped by creel days. The selected model was re-ran with all available
traffic counter data and remaining independent data to explore how
posterior estimates of seasonal fishing effort varied with sample size.

We were interested in evaluating whether traffic counters combined
with creel observations would improve precision of fishing effort esti-
mates over what would be gained simply from creel alone. We therefore
estimated fishing effort from instantaneous counts of fishing boats using
a hierarchical model based on methods of Pollock et al. (1994) and.
Mean hourly fishing effort (Et ) was calculated from

= ∼E ρ ρ N μ τlog( ) ; ( , )t S W t S W t S W S W( ) , ( ) , ( ) ( ) (19)

where μ S W( ) and τ S W( ) are hyper-mean and hyper-precision for week-
days (W=1) or weekends and holidays (W=2). Daily effort is esti-
mated then calculated as

=E E S eˆt t t
ξt (20)

Where St is the number of daylight hours for day-t and ξt is a normally
distributed random process error with precision τB. Days where no
fishing effort observations were made are predicted from hyper-mean
and hyper-precision for that day-type (weekend or weekday). Seasonal
effort is predicted by summing across all days. Observations of angling
boaters counted over discrete hours were fit to Eq. (20) assuming
Poisson observation error.

All data manipulation was performed in R (R Core Development
Team, 2016), with MCMC numerical approximation of the posterior
distribution performed in JAGS 4.2.0 (Plummer, 2003). Posterior dis-
tributions were calculated from 10,000 iterations after an initial burn-in
of 50,000 iterations and further thinned to provide a final sample of
1000 iterations from each of three MCMC chains. Convergence could
not be rejected given visual inspection of MCMC chains and Gelman-
Rubin convergence diagnostics. All R and JAGS code are available at
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https://github.com/bvanpoor/Traffic-counter-effort-model.git. We in-
clude our datasets in the posting for use by others as a template for
future analyses.

3. Results

Two traffic counters operated continuously at Kawkawa Lake from
May 1 to December 1, 2016. The counter at the top of the road recorded
3491 vehicles and the counter near the boat ramp recorded 3511 ve-
hicles. As part of the stratified-design creel survey, independent counts
of boats and traffic occurred for 91 days over the same date range. A
total of 633 hourly counts of fishing and non-fishing boats were re-
corded, observing 1934 angling hours and 1104 non-angling boat
hours. A total of 173 hourly counts of traffic to the boat launch were
also recorded, with 241 vehicles with boats and 700 vehicles with no
boats.

Each of the models successfully fit to data from traffic counters
when supplemented with data on hourly summaries of fishing/non-
fishing boats on the water, hourly summaries of vehicles with and
without boats approaching the boat ramp and data on trip length of
anglers. Posterior estimates of seasonal fishing effort from the four
models overlapped with medians ranging from 6600 to 7158 angler-
hours (Fig. 1).

Model selection was evaluated using both DIC and k-fold cross

validation. Model 3 was the most parsimonious model based on DIC and
had the lowest mean MSE when performing k-fold cross validation,
although Model 1 was approximately equivalent (Table 2). Models 2
and 4 had higher mean MSE suggesting weather is a poor predictor of
the proportion of traffic that is boating but not fishing. We chose Model
3 as the best model evaluated, due to its superior parsimony and pre-
dictive ability.

Model 3 was used to predict daily estimates in fishing effort over the
season (Fig. 2). The model predicted strong daily variation in fishing
effort, which does not necessarily follow a weekday-weekend pattern.
There was a marked decline in fishing effort in September, coinciding
with the end of the holiday season and the beginning of kokanee staging
for spawning, where angler success declines.

Model results were sensitive to the number of days of independent
data (Fig. 3). Reducing the available independent data to 80% (72 days
of data) did not change the estimate of seasonal effort, but further re-
ductions led to variation in effort estimates, though the precision of
posterior seasonal effort estimates did not change appreciably. With
only 18 days of independent data the seasonal effort estimate was sig-
nificantly different, with median estimate nearly 50% of the estimate
obtained with 100% of independent data.

Fishing effort was also estimated with only instantaneous observa-
tions of fishing effort, as would often occur in a stratified random
sampling strategy for estimating fishing effort. Patterns of daily fishing

Table 1
Prior and hyper-prior distributions for all estimated parameters and random variables used the model. Note parameters pf,t and pb,t are estimated using either hyper-parameters or logit-
transformed linear models. Prior distributions are defined as B:beta; G:gamma; and N:normal.

Parameter Description Prior Hyper-prior Model

Vt Total visitors U (0,1000)
LF Length of fishing day U (0,12)
LB Length of non-fishing boat day 2
pf t, Proportion of daily traffic that fishes −B μ τ τ μ( , (1 ))f f f f ∼

∼

μ B

τ G

(1,1)

(0.001,0.001)
f

f

1,3

Eq. (18) 2,4

pb t, Proportion of non-fishing traffic with a boat −B μ τ τ μ( , (1 ))b b b b ∼
∼

μ B
τ G

(1,1)
(0.001,0.001)

b

b

1,2
Eq. (18) 3,4

μ F t( ) Mean arrival hour for anglers N μ τ( , )μ F μ F( ) ( ) ∼
∼

μ N
τ G

(0,0.01)
(0.001,0.001)

μ F

μ F

( )

( )

τ F t( ) Precision in arrival time for anglers G α β( , )τ F τ F( ) ( ) ∼
∼

α G
β G

(0.001,0.001)
(0.001,0.001)

τ F

τ F

( )

( )

μ B t( ) Mean arrival hour for non-fishing boaters N μ τ( , )μ B μ B( ) ( ) ∼
∼

μ N
τ G

(0,0.01)
(0.001,0.001)

μ B

μ B

( )

( )

τ B t( ) Precision in arrival time for non-fishing boaters G α β( , )τ B τ B( ) ( ) ∼
∼

α G
β G

(0.001,0.001)
(0.001,0.001)

τ B

τ B

( )

( )

μ NB t( ) Mean arrival time for non-boaters N μ τ( , )μ NB μ NB( ) ( ) ∼
∼

μ N
τ G

(0,0.01)
(0.001,0.001)

μ NB

μ NB

( )

( )

τ NB t( ) Precision in arrival time for non-boaters G α β( , )τ NB τ NB( ) ( ) ∼
∼

α G
β G

(0.001,0.001)
(0.001,0.001)

τ NB

τ NB

( )

( )

δ F t( ),
0 Proportion of visitors fishing N μ τ( , )μ δF μ Fδ( ) ( ) ∼

∼
μ N

τ G
(0,1.47)

(0.001,0.001)
δF

δF

( )

( )

δ B t( ),
0 Proportion of non-fishing visitors with boats N μ τ( , )μ δB μ δB( ) ( ) ∼

∼
μ N

τ G
(0,1.47)

(0.001,0.001)
δB

δB

( )

( )

δ δ,F
D

B
D

( ) ( ) Weekend coefficient N (0,1.47) 2,3,4

δ δ,F
T

B
T

( ) ( ) Temperature coefficient N (0,1.47) 2,3,4

δ δ,F
P

B
P

( ) ( ) Precipitation coefficient N (0,1.47) 2,3,4

δ δ,F
TP

B
TP

( ) ( ) Temperature-precipitation interaction coefficient N (0,0.1.47) 2,3,4

=ρ S W t( ) 1, Mean hourly fishing effort for weekdays = =N μ τ( , )S W S W( ) 1 ( ) 1 ∼
∼
=

=

μ N
τ G

(0,0.35)
(0.001,0.001)

S W

S W

( ) 1

( ) 1

=ρ S W t( ) 2, Mean hourly fishing effort for weekdays = =N μ τ( , )S W S W( ) 2 ( ) 2 ∼
∼

=

=

μ N
τ G

(0,0.35)
(0.001,0.001)

S W

S W

( ) 2

( ) 2

ωt Fishing and boating process error G (0.001,0.001)
ψt Traffic process error G (0.001,0.001)
χt Launch use process error G (0.001,0.001)
ξt Fishing process error for stratified counts G (0.001,0.001)
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effort in May through August were driven by nearly daily counts of
anglers on the lake (Fig. 4). There were few angler counts after August
and predicted angler counts were based almost entirely on hyper-
parameters with weekends experiencing higher predicted fishing effort
than weekdays. Daily pattern based on creel data alone was much
different than from the traffic counters, with much less seasonal var-
iation than estimated with traffic counters. Seasonal fishing effort was
predicted to be 8818 angler hours when only stratified angler counts
were used to estimate effort. The 95% quantiles of posterior estimates
of fishing effort from the creel survey and the traffic counters did not
overlap, with creel estimates being significantly higher. As the number
of angler counts declined, precision quickly declined, thought median
seasonal fishing effort was relatively consistent (Fig. 4).

4. Discussion

There are a variety of methods for monitoring fishing effort,

including on-site surveys (creel surveys; McCormick and Meyer, 2017;
Soupir et al., 2006), off-site surveys (phone, mail or internet ques-
tionnaires; Barrett et al., 2017) or remote monitoring (e.g. aerial counts
and cameras; Parkinson et al., 1988; van Poorten et al., 2015). Each is
appropriate for a variety of situations and resulting estimates will have
different precision. We suggest traffic counters as an additional tool for
fishing effort estimation, which can be used in remote or high-traffic
areas. Our analysis overcomes most issues with using traffic counters to
monitor fishing effort, namely separating fishing from non-fishing
traffic and estimating total fishing time. Moreover, uncertainty in
fishing time and the seasonal pattern in traffic patterns for anglers and
non-anglers are appropriately accounted for. Our proposed method
produces relatively precise estimates of fishing effort and can be used in
situations where fishing effort is related to traffic approaching one or
more lake access points and where some independent observations of
fishing versus non-fishing traffic can be obtained.

Although we have demonstrated our method on a relatively mixed-

Fig. 1. Posterior predictive estimates of seasonal fishing effort on Kawkawa Lake in 2016, as estimated by Models 1–4.

Table 2
Structure of the four models evaluated along with descriptive statistics used to determine the most appropriate model to describe the data. Each model is reported with the effective
number of parameters (pD), deviance information criterion (DIC) and the relative difference between model DIC, the minimum DIC among models (DDIC) and the median and 95%
credible intervals of mean squared error based on k-fold cross validation. Effective number of parameters (pD) is defined as the difference between the mean of posterior deviance and
deviance when means of each estimated parameter is used (). The model with the lowest DIC and median posterior error is bolded; all subsequent analyses are based on this model.

Model pD DIC DDIC Median MSE 95% Credible intervals

1 ∼ −

∼ −

p B μ τ τ μ

p B μ τ τ μ

( , (1 ))

( , (1 ))
f t f f f f

b t b b b b

,

,

6,859.8 55,023 599 28.0 19.9, 40.8

2 =

∼ −

p f D T P

p B μ τ τ μ

( , , ,)

( , (1 ))
f t t t t

b t b b b b

,

,

6,731.3 54,662 238 39.9 26.1, 60.0

3 ∼ −

=

p B μ τ τ μ

p f D T P

( , (1 ))

( , , ,)
f t f f f f

b t t t t

,

,

6,408.5 54,424 0 27.9 19.4, 40.7

4 =

=

p f D T P

p f D T P

( , , ,)

( , , ,)
f t t t t

b t t t t

,

,

6,545.7 54,502 77 50.1 31.6, 82.3
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use lake, the number of independent counts of anglers needed for re-
liable fishing estimates was quite high. However, estimates of seasonal
fishing effort were significantly lower than when using only creel data.

Although we have no true estimate of fishing effort, this does point to a
potential error in creel estimates of effort, which assume relatively
uniform fishing effort through the day absent any known daily

Fig. 2. Mean daily temperature (top), precipitation (middle) and estimated fishing effort (bottom) on Kawkawa Lake from May 1 to December 1, 2016 using Model 3. Dark line in bottom
panel indicates median daily estimate, shaded area is 80% credible intervals.

Fig. 3. Posterior predictive estimates of seasonal fishing effort on Kawkawa Lake using Model 3 with varying amounts of supplemental data. Sample size (n) is defined as the number of
days with supplemental data.
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distribution of fishing effort. In this sense, traffic counters with sup-
plemental data provide a potential improvement in accuracy of fishing
effort estimates. Overall, we suggest that traffic counters may be more
appropriate on remote lakes where a high proportion of boating traffic
is devoted to fishing, thereby resulting in more precise estimates of pf
and pb. The result is fewer independent counts of traffic or anglers on
the lake required to provide sufficiently accurate estimates of seasonal
fishing effort. We cannot be prescriptive on the number of independent
counts needed for any particular situation; appropriate sample size
planning (Barrett et al., 2017) will be required to determine appropriate
sampling frequency.

Traffic counters are not appropriate for monitoring fishing effort in
all situations and it is important to understand their limitations. Fishing
effort can originate from launched boats, privately docked boats, and
boats arriving from other water bodies. Shore-based anglers can also be
a significant portion of anglers at a water body, unlike the situation at
our study site. If most anglers do not come from launched boats, or if
the relative proportion derived from each method systematically varies
throughout the year, traffic counters may not be appropriate or the
analysis of these data will require a more complex estimation of pf and
pb. However, this is not to say our analysis underestimates fishing effort
if effort originates from sources other than a boat launch. Since traffic
counters are only used as an index of fishing effort, our analysis may be
accurate as long as fishing effort from all sources is correlated in timing.
An additional requirement of traffic counters is the provision of in-
dependent information on relative proportion of fishing and non-fishing
traffic to the launch and actively fishing per hour. We have shown that
effort estimates may be sensitive to sample size of observations of
fishing effort and traffic. In most situations where so many independent
counts were deemed necessary, it may be that traffic counters are not
necessary and sufficient accuracy can be gained just from creel surveys.
The decision on how many independent data observations will depend

on the dynamics of the fishing location (i.e. require some sample size
planning; Barrett et al., 2017).

Although there are benefits to using traffic counters concurrent with
a creel survey (Steffe et al., 2008), it is not necessary. The benefit of
combining the two survey methods is the ability to estimate total catch
and harvest available through the creel survey (Steffe et al., 2008).
However, if fishing effort is the sole information needed, it may be
logistically advantageous to install a traffic counter concurrently with a
motion-detecting camera, which photographs vehicles arriving and
departing from the lake. Photos from the camera could be sub-sampled
by a set number of days, which would provide trip times (if individual
vehicles could be identified upon arrival and departure) and the relative
proportion of fishing boats, non-fishing boats and vehicles with no boat.
This method entirely removes the need for on-site counts of anglers and
traffic, thereby making traffic counters well-suited for remote locations.

Like all technology, traffic counters may be prone to failure. van
Poorten et al. (2015) treated camera data as a covariate of fishing effort,
so that camera failure resulted in a need for imputation to ‘fill in’
missing observations using data from adjacent monitored fisheries.
Likewise, Hartill et al. (2016) used Generalized Linear Models to predict
trailer boats based on similar data at adjacent sites, due to their high
temporal correlation; Lancaster et al. (2017) used a Generalized Linear
Mixed Model to fill in compliance data using environmental and geo-
graphic data. The choice of which method to use for imputation will
influence overall estimates, as each imputation method has its own
assumptions (Garcia-Laencina et al., 2010). Our method for estimating
fishing effort from traffic counters treats observations as data to fit, so
missing data do not need to be imputed. The state-space model simply
estimates trips based on hyper-parameters assuming all estimated
parameters are exchangeable. Doing so allows information to be drawn
from the entire data series to inform estimates of effort. Moreover,
traffic counters can be used in isolation, rather than requiring similar

Fig. 4. Daily estimated fishing effort (top) with mean (dark line) and 80% credible intervals (shaded area). Bottom panel shows how seasonal fishing effort estimate changes as fewer data
points are used to fit to the model.
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lakes to be concurrently monitored. In this way, traffic counters are a
novel effort monitoring tool and may be useful in situations where
other methods were previously impractical.
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